[Machine Learning] SVM 회귀
SVM 회귀 SVM을 회귀에 적용하는 방법은 제한된 마진 오류 (도로 밖 샘플) 안에서 도로 안에 가능한 많은 샘플이 들어가도록 학습한다. 도로 폭은 하이퍼파라미터 ϵ로 조절한다. 마진 안에서 훈련 샘플이 추가되어도 모델의 예측에는 영향이 없게 되면, ϵ에 민감하지 않다고 한다. from sklearn.svm import LinearSVR svm_reg = LinearSVR(epsilon=1.5) svm_reg.fit(X, y) LinearSVR(C=1.0, dual=True, epsilon=1.5, fit_intercept=True, intercept_scaling=1.0, loss='epsilon_insensitive', max_iter=1000, random_state=None, tol=0.0001..
2022. 9. 30.