본문 바로가기
728x90
반응형
SMALL

Python Library/Keras17

[Keras] 모델 플롯 유틸리티 plot_model 함수 keras.utils.plot_model( model, to_file="model.png", show_shapes=False, show_dtype=False, show_layer_names=False, rankdir="TB", expand_nested=False, dpi=200, show_layer_activations=False, show_trainable=False, **kwargs ) model_to_dot 함수 keras.utils.model_to_dot( model, show_shapes=False, show_dtype=False, show_layer_names=True, rankdir="TB", expand_nested=False, dpi=200, subgraph=Fa.. 2024. 4. 2.
[Keras] 멀티모달 함의 분류 (2) 데이터 입력 파이프라인 구축 TensorFlow Hub는 다양한 BERT 계열의 모델을 제공한다. 각 모델에는 해당하는 전처리 계층이 함께 제공된다. 리소스에서 이러한 모델과 해당 전처리 계층에 대해 더 자세히 알 수 있다. 런타임을 짧게 하기 위해 원래 BERT 모델의 더 작은 변형을 사용한다. # Define TF Hub paths to the BERT encoder and its preprocessor bert_model_path = ( "https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-256_A-4/1" ) bert_preprocess_path = "https://tfhub.dev/tensorflow/bert_en_uncased_pre.. 2024. 4. 2.
[Keras] 멀티모달 함의 분류 (1) 멀티모달 함의 분류 멀티모달 함의를 예측하기 위한 모델을 구축하고 훈련한다. Google Research에서 소개한 다중 모드 수반성 데이터 세트 multimodal entailment dataset를 사용한다. 멀티모달 함의란 소셜 미디어 플랫폼에서는 콘텐츠를 감사하고 중간 정도의 콘텐츠를 제공하기 위해 거의 실시간으로 다음 질문에 대한 답을 찾고자 할 수 있다. 주어진 정보는 다른 정보와 모순 (contradict) 되는지? 주어진 정보는 다른 정보를 의미 ( imply)하는지? 자연어 처리에서 이 작업은 텍스트 함의 분석이라고 한다. 이것은 정보가 텍스트 콘텐츠에서 나올 때만 해당된다. 실제로 사용 가능한 정보는 텍스트 콘텐츠뿐만 아니라 텍스트, 이미지, 오디오, 비디오 등의 멀티모달 조합에서 나오.. 2024. 3. 30.
[Keras] ImageDataGenerator class weight ImageDataGenerator class weight 딥러닝시 이미지 데이터의 불균형 문제를 해결하기 위해 class에 따른 가중치를 다르게 부여할 수 있다. from sklearn.utils import compute_class_weight import numpy as np train_classes = train_generator.classes class_weights = compute_class_weight( class_weight = "balanced", classes = np.unique(train_classes), y = train_classes ) class_weights = dict(zip(np.unique(train_classes), class_weights)) model.fit_gen.. 2023. 9. 8.
[Keras] tflite 변환 tflite 변환 케라스 모델은 딥러닝 모델을 개발하기 위한 고수준 라이브러리인 케라스를 이용하여 만든 모델이다. tensorflow의 tf.keras 모듈을 통해 케라스 모델을 바로 만들거나 SavedModel, HDF5 포맷으로 저장된 모델을 케라스 모델로 불러와서 tensorflow lite 모델로 변환할 수 있다 h5 파일을 pb 파일로 변환 from tensorflow import keras model = keras.models.load_model('model.h5', compile = False) export_path = './pb' model.save(export_path, save_format = "tf") pb 파일을 tflite 파일로 변환 saved_model_dir = './pb' .. 2022. 11. 24.
[Keras] ImageDataGenerator ImageDataGenerator tf.keras.preprocessing.image.ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-06, rotation_range=0, width_shift_range=0.0, height_shift_range=0.0, brightness_range=None, shear_range=0.0, zoom_range=0.0, channel_shift_range=0.0, fill_mode='nearest',.. 2022. 8. 20.
[Keras] 배치 정규화 (Batch Normalization) 배치 정규화 (Batch Normalization) 배치 정규화 (batch normalization, BN)는 층으로 들어가는 입력값이 한쪽으로 쏠리거나 너무 퍼지거나 너무 좁아지지 않게 해주는 인공신경망 기법이다. 여러 입력값을 모은 배치에 대해, 각 층의 입력값의 평균과 표준편차를 다시 맞추어 주어, 입력값이 쏠리는 것을 막는다. BN은 주어진 데이터 세트의 평균 (shifting)과 분산 (scaling)을 특정 값으로 조정하는 것이다. 이것은 주어진 모델을 훈련하는 데 사용된 이전 입력 데이터에 따라 선택된다. 데이터 평균을 0, 표준편차를 1로 분포시킨다. 높은 학습율을 사용하여 빠른 속도로 학습하면서 overfitting을 줄이는 효과가 있다고 알려져 있다. tf.keras.layers.Ba.. 2022. 7. 31.
[Keras] Functional 모델 Functional model Keras에서 Functional API는 tf. keras보다 더 유연한 모델을 만드는 방법이다. 다중 출력 모델, 방향성 비순환 그래프 또는 공유 레이어가 있는 모델과 같은 복잡한 모델을 정의하는 방법이다. Functional API는 비선형 topology, 공유 계층, 심지어 다수의 입력 또는 출력을 가진 모델을 처리할 수 있다. from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense import netron from tensorflow.keras.layers import Input from tensorflow.keras import Model _input = In.. 2022. 7. 30.
[Keras] ModuleNotFoundError: No module named 'keras' from keras.models import Sequential from keras.layers import LSTM,Dropout,Dense 위 코드를 아래 코드로 변경하면 해결된다. from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM,Dropout,Dense 2022. 3. 31.
[Keras] Model.evaluate 함수 Model.evaluate evaluate 함수를 사용하면 모델의 최종적인 accuracy와 loss 값을 알 수 있다. loss는 예측값과 실제값이 차이나는 정도를 나타내는 지표이며 작을 수록 좋다. Model.evaluate( x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None, callbacks=None, max_queue_size=10, workers=1, use_multiprocessing=False, return_dict=False, **kwargs ) https://keras.io/api/models/model_training_apis/#evaluate-method Keras documentation: Mode.. 2022. 1. 4.
728x90
반응형
LIST