본문 바로가기
728x90
반응형
SMALL

python106

[Python] pyenv 버전 관리 pyenv 버전 관리 pyenv versions Python 실행 경로가 pyenv가 관리하는 경로가 아닌 시스템 Python을 가리키고 있다. /usr/local/bin/python을 사용하고 있어서 pyenv의 제어를 받지 않고 있다. 환경 변수를 적용하기 위해 다음 명령으로 쉘을 적용한다. export PYENV_ROOT="$HOME/.pyenv"export PATH="$PYENV_ROOT/bin:$PATH"eval "$(pyenv init --path)"eval "$(pyenv init -)"exec "$SHELL" 다음 명령어로 실행할 python 버전을 지정할 수 있다 (가상 환경을 나오면 적용된 것을 확인 가능). # 전역 설정pyenv global 3.9.0# 특정 디렉토리pyenv loc.. 2024. 11. 6.
[PyTorch] optimizer 시각화 utils.py import numpy as npimport torchimport torch.nn as nnimport matplotlib.pyplot as pltfrom collections import defaultdict# XOR & Perceptrondef draw_function(func, return_fig=False): xx = torch.linspace(-5, 5, steps=1000) fig = plt.figure() plt.plot(xx.numpy(), func(xx).numpy()) plt.xlabel("x", fontdict={"fontsize":16}) plt.ylabel("y", fontdict={"fontsize":16}, rotation=0) .. 2024. 9. 4.
[MLops] MLflow MLflow MLflow는 머신러닝 라이프사이클을 관리하기 위한 오픈 소스 플랫폼이다. 이 플랫폼은 머신러닝 모델의 실험, 개발, 배포, 그리고 운영 과정을 자동화하고 일관되게 관리할 수 있도록 도와준다. MLflow는 사용자가 실험을 추적하고, 재현 가능한 환경에서 프로젝트를 실행하며, 다양한 포맷의 모델을 저장하고 배포할 수 있게 해준다. pip install mlflowpip install --upgrade pip pip install setuptools 터미널에서 mlflow ui를 입력하면 기계 학습 코드를 실행할 때 매개변수, 코드 버전, 지표 및 출력 파일을 기록하고 결과를 시각화하기 위한 API 및 UI로 접속할 수 있다. mlflow ui  iris 데이터 실습 : 데이터 로드 from .. 2024. 8. 19.
[MLops] 데이터베이스 MySQL 컨테이너 기존 mlops 컨테이너와 동일한 네트워크로 설정하여 통신하도록 생성한다. docker run -itd --name my-mlops-db --network mlops -e MYSQL_ROOT_PASSWORD=root mysql:8.0.39 그 다음, 컨테이너에 진입하여 mlops 데이터베이스 생성한다. # 컨테이너 진입docker exec -it my-mlops-db bash# MySQL 로그인mysql -u root -p # root 패스워드 입력# 데이터베이스 생성create database mlops;# 생성 확인show databases;# 패스워드 인증 방식 변경(python mysqlclient 라이브러리 호환성)alter user 'root'@'%' identified .. 2024. 8. 13.
[MLops] 모델 추론 src/main.py 모델 확장 파일을 pth로 지정한다. model_ext = "pth"python src/main.py train --model_name movie_predictor --optimizer adam --num_epochs 20 --lr 0.002  src/utils/utils.py torch.save는 내부적으로 pickle을 사용해 직렬화 (마샬링) 후 저장하게 된다. 이는 보안적 취약점으로 작용하게 된다. 따라서, 최소한의 검증 절차인는 sha256 해시 알고리즘을 통해 변조 여부를 최소한으로 확인한다. import osimport randomimport hashlibfrom datetime import datetimeimport numpy as npimport torchdef pa.. 2024. 8. 13.
[MLops] 학습 결과 기록하기 wandb W&B (Weight and Bias)은 실험 그룹 혹은 실험 단위로 실험 이력 요소들을 관리할 수 있다. https://wandb.ai/site에 접속하여 가입한 후 API 키를 발급받는다. pip install wandb 그리고 다음 경로에서 API 키를 저장하기 위해 환경 변수 파일인 .env를 생성한다.  src/utils/utils.py Run name 자동 지정하기 위해 다음을 추가한다. def auto_increment_run_suffix(name: str, pad=3): suffix = name.split("-")[-1] next_suffix = str(int(suffix) + 1).zfill(pad) return name.replace(suffix, next_s.. 2024. 8. 12.
[MLops] 모델 저장하기 라이브러리 설치 ONNX 포맷으로 저장하기 위해 다음을 실행한다. 그리고 Fire 라이브러리를 활용하면 task 별로 필요한 인자를 설정하여 CLI 기반 프로그램을 쉽고 빠르게 만들 수 있다. task를 분리하면 다양한 장점이 있다 (필요한 태스크만 수행, 트러블 슈팅 및 디버깅 용이, 유연한 자원 할당, 유지보수성, 워크플로우 관리 등). pip install onnx onnxruntime fire src/model/movie_predictor.py torch(pth) 포맷으로 저장하기 아래 코드를 추가한다. import osimport datetimeimport torchfrom src.utils.utils import model_dirimport torch.nn as nnclass MoviePred.. 2024. 8. 12.
[MLops] 모델 훈련 디렉토리 생성 opt 디렉토리에서 mlops-model 디렉토리를 생성한다. mkdir mlops-modelmkdir datasetcp /opt/mlops-crawler/result/watch_log.csv dataset/ 패키지 설치 pip install -U numpy==1.26.4pip install torch torchinfo scikit-learn icecream main.py import torchimport torch.nn as nnimport torch.optim as optimfrom torch.utils.data import Dataset, DataLoaderimport pandas as pdimport numpy as npfrom sklearn.model_selection import.. 2024. 8. 9.
[MLops] TMDB API 데이터 수집 및 전처리 TMDB API https://developer.themoviedb.org/reference/intro/getting-started에 회원가입 후 아래와 같이 개발자용 API 토큰을 발급받는다.   opt 디렉토리로 이동하여 실습 디렉토리를 생성한다.  그 다음, 러스트 언어로 개발된 uv 패키지 관리자를 설치하여 네트워크 통신 등 코드 동작 속도를 빠르게 해준다. pip install uv 사용법은 pip 앞에 uv를 붙여준다. uv pip install requests pandas numpy matplotlib python-dotenv Vim 설정 vi ~/.vimrcsyntax onset expandtabset autoindentset ts=4set shiftwidth=4set nuset curso.. 2024. 8. 9.
[MLops] Docker에서 MLops 네트워크 구성 네트워크 할당  커스텀 네트워크에 도커 컨테이너를 할당하기 위해 호스트와 컨테이너 네트워크를 구성한다. docker network create --gateway 172.20.0.1 --subnet 172.20.0.0/24 mlops python 컨테이너 docker run -itd --name my-mlops --network mlops python:3.11-buster docker ps로 컨테이너가 올라갔는지 확인한다.  bash 그 다음, bash로 접근하여 패키지 관리자 최신화를 위해 apt 업데이트한다. apt install -y vim wgetcat /etc/os-release 2024. 8. 9.
728x90
반응형
LIST