본문 바로가기
728x90
반응형
SMALL

시각 지능24

[Generative Model] 서로 다른 이미지 오토인코더 라이브러리 from matplotlib.pyplot import imshow import numpy as np import cv2 from tensorflow.keras.utils import img_to_array from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D from tensorflow.keras.models import Sequential SIZE=256 # Limiting to 256 size image as my laptop cannot handle larger images. img_data = [] img = cv2.imread('einstein.jpg', 1) # Change 1 to 0 for Grey scal.. 2022. 11. 25.
[Generative Model] 노이즈 제거 (MNIST) 라이브러리 from tensorflow.keras.datasets import mnist from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D from tensorflow.keras.models import Sequential import numpy as np import matplotlib.pyplot as plt (x_train, _), (x_test, _) = mnist.load_data() x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_train = np.reshape(x_train, (len(x_train), 28, .. 2022. 11. 25.
[Generative Model] 단일 이미지 오토인코더 라이브러리 from matplotlib.pyplot import imshow import numpy as np import cv2 from tensorflow.keras.utils import img_to_array from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D from tensorflow.keras.models import Sequential np.random.seed(42) SIZE = 256 img_data = [] img = cv2.imread('monalisa.jpg', 1) # Change 1 to 0 for grey images img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 이미.. 2022. 11. 25.
[Image Classification] MobileNet V2 MobileNet V2 현대 최첨단 네트워크는 많은 모바일 및 임베디드 응용 프로그램의 기능을 뛰어넘는 높은 계산 리소스를 필요로 한다. 최근 유전자 알고리즘과 강화 학습을 포함한 최적화 방법을 아키텍처 검색에 가져오는 새로운 방향을 열었다. 그러나 한 가지 단점은 결과 네트워크가 매우 복잡해진다는 것이다. Linear Bottlenecks 비공식적으로, 실제 이미지의 입력 세트에 대해, 계층 활성화 세트가 "관심 있는 다양체"를 형성한다고 말한다. 신경망에 대한 관심의 다양체가 저차원 하위 공간에 내장될 수 있다고 오랫동안 가정되어 왔다. 저자들은 관심 다양체가 고차원 활성화 공간 1의 저차원 부분 공간에 있어야 한다는 요구사항을 나타내는 두 가지 특성을 강조했다. 관심 manifold가 ReLU 변환.. 2022. 9. 23.
[Image Classification] DenseNet (MNIST) DenseNet 케라스 API에서는 이 아키텍처의 구현물을 공식적으로 제공하며 tf.keras.application 패키지를 통해 접근할 수 있다. 이 패키지에는 그 외에도 잘 알려진 모델이 포함되어 있으며 각 모델에 대해 ‘사전에 훈련된’ 매개변수 (특정 데이터셋에서 사전에 훈련시키는 과정에서 저장해둔 매개변수)도 제공한다. 예를 들어, 다음 명령어로 DenseNet 네트워크를 인스턴스화할 수 있다. Dense_net = tf.keras.applications.DenseNet121(Include_top = True, weights = 'imagenet', input_tensor = None, Input_shape = None, pooling = None, classes = 1000) 이 기본 인수를 사.. 2022. 9. 14.
[Image Classification] VGGNet VGGNet VGGNet은 옥스포드 대학의 연구팀에 의해 개발된 모델로써, 2014년 ILSVRC에서 준우승한 모델이다. 이 모델은 이전에 혁신적으로 평가받던 AlexNet이 나온지 2년만에 다시 한 번 오차율 면에서 큰 발전을 보여줬다. VGGNet의 original논문의 개요에서 밝히고 있듯이 이 연구의 핵심은 네트워크의 깊이를 깊게 만드는 것이 성능에 어떤 영향을 미치는지를 확인하고자 한 것이다.VGG연구팀은 깊이의 영향 만을 최대한 확인하고자 컨볼루션 필터 커널의 사이즈는 가장 작은 3x3으로 고정했다. VGG 연구팀은 original 논문에서 총 6개의 구조 (A, A-LRN, B, C, D, E)를 만들어 성능을 비교했다. 여러 구조를 만든 이유는 기본적으로 깊이의 따른 성능 변화를 비교하기 .. 2022. 9. 6.
[시각 지능] Roboflow Roboflow Roboflow는 개발자가 기술이나 경험에 관계없이 자신의 컴퓨터 비전 애플리케이션을 구축할 수 있도록 지원한다. 원시 이미지를 훈련된 맞춤형 컴퓨터 비전 모델로 변환하고 애플리케이션에서 사용하기 위해 배포하는 데 필요한 모든 도구를 제공한다. 현재 Roboflow는 객체 감지 및 분류 모델을 지원한다. https://public.roboflow.com/object-detection/mask-wearing/4에서 포맷을 YOLO v5 Pytorch로 다운로드하고 파일 이름을 Mask_Data.zip으로 변경한다. YOLOv5 설치 # Colab root dir ROOT_DIR = '/content' import os YOLOv5_ROOT_DIR = os.path.join(ROOT_DIR,.. 2022. 9. 4.
[Object Detection] YOLOv5 YOLOv5 YOLO는 'You only look once'의 약자로 이미지를 그리드 시스템으로 분할하는 객체 감지 알고리즘이다. 그리드의 각 셀은 자체 내에서 개체를 감지하는 역할을 한다. YOLO는 속도와 정확성으로 인해 가장 유명한 객체 감지 알고리즘 중 하나이다. YOLOv5🚀COCO 데이터 세트에서 사전 훈련된 객체 감지 아키텍처 및 모델이며, 수천 시간의 연구 및 개발을 통해 학습한 교훈과 모범 사례를 통합하여 미래 비전 AI 방법에 대한 Ultralytics 오픈 소스 연구가 있다. YOLOv4 출시 직후 Glenn Jocher는 Pytorch 프레임워크를 사용하여 YOLOv5를 도입했다. 오픈 소스 코드는 GitHub 에서 사용할 수 있다. YOLOv5 설치 구글 코랩에서 진행한다. %cd.. 2022. 9. 4.
[Object Detection] YOLO Inference YOLO Inference 입력 이미지를 7 x 7 그리드 셀로 나누며, 각각의 그리드 셀에 들어있는 2개의 bounding box 정보와 물체의 클래스 정보가 들어있는 7x7x (5+5+20) 데이터가 YOLO 예측 결과이다. 1st bounding box of a grid cell 2nd bounding box of a grid cell Class score class-specific confidence score 계산 YOLO에서는 동일한 객체에 대하여 많은 bounding box가 잡힐 수 있다. 98개 bbox 각각이 가지고 있는 class specific confidence score에 대해서 각 20개의 클래스에 대해 신뢰도가 가장 높은 bbox만 남기고 나머지 bbox를 없애는 NMS (n.. 2022. 9. 3.
[시각 지능] TPU (Tensor Processing Unit) TPU (Tensor Processing Unit) 구글에서 2016년 5월에 발표한 데이터 분석 및 딥러닝용 NPU를 모아놓은 하드웨어이다. 벡터/행렬연산의 병렬처리에 특화되어 있으며 넘사벽급의 전성비를 자랑한다. 비결은 8비트 정수 연산을 활용하는 것이다. 이는 NVIDIA등에서도 실현한적 있다. 차이점이라면, TPU는 모델의 실행뿐만 아니라 학습 과정에도 8비트 정수 연산을 활용할 것으로 추정된다는 것이다. (자세한 정보 공개가 없는 상황이라 정확하진 않지만) GPGPU에서 딥러닝에 필요한 것들만 남기고 나머질 다 빼버린 설계와 비슷하다는 추측도 있다. 성능 항목의 PCI-E 병목 문제를 생각하면 APU (정확히는 HSA)나 NVLINK에 가까운 구조를 포함하는 것일 수도 있다. NVIDIA의 경우.. 2022. 9. 3.
728x90
반응형
LIST