728x90
반응형
SMALL
라이브러리
from tensorflow.keras.datasets import mnist
from tensorflow.keras.layers import Conv2D, MaxPooling2D, UpSampling2D
from tensorflow.keras.models import Sequential
import numpy as np
import matplotlib.pyplot as plt
(x_train, _), (x_test, _) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))
# adding some noise
noise_factor = 0.5
x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape)
x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape)
x_train_noisy = np.clip(x_train_noisy, 0., 1.)
x_test_noisy = np.clip(x_test_noisy, 0., 1.)
# Displaying images with noise
plt.figure(figsize=(20, 2))
for i in range(1,10):
ax = plt.subplot(1, 10, i)
plt.imshow(x_test_noisy[i].reshape(28, 28), cmap="binary")
plt.show()
모델 구성
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=(28, 28, 1)))
model.add(MaxPooling2D((2, 2), padding='same'))
model.add(Conv2D(8, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D((2, 2), padding='same'))
model.add(Conv2D(8, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D((2, 2), padding='same'))
model.add(Conv2D(8, (3, 3), activation='relu', padding='same'))
model.add(UpSampling2D((2, 2)))
model.add(Conv2D(8, (3, 3), activation='relu', padding='same'))
model.add(UpSampling2D((2, 2)))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(UpSampling2D((2, 2)))
model.add(Conv2D(1, (3, 3), activation='relu', padding='same'))
model.compile(optimizer='adam', loss='mean_squared_error')
model.summary()
model.fit(x_train_noisy, x_train, epochs=10, batch_size=256, shuffle=True,
validation_data=(x_test_noisy, x_test))
모델 평가
model.evaluate(x_test_noisy, x_test)
no_noise_img = model.predict(x_test_noisy)
plt.figure(figsize=(40, 4))
for i in range(10):
# display original
ax = plt.subplot(3, 20, i + 1)
plt.imshow(x_test_noisy[i].reshape(28, 28), cmap="binary")
# display reconstructed (after noise removed) image
ax = plt.subplot(3, 20, 40 +i+ 1)
plt.imshow(no_noise_img[i].reshape(28, 28), cmap="binary")
plt.show()
728x90
반응형
LIST
'Visual Intelligence > Generative Model' 카테고리의 다른 글
[Generative Model] 오토인코더 (MNIST) (0) | 2022.12.08 |
---|---|
[Generative Model] 오토인코더 (AutoEncoder) (0) | 2022.12.08 |
생성 모델 (Generative Model) (0) | 2022.12.08 |
[Generative Model] 서로 다른 이미지 오토인코더 (0) | 2022.11.25 |
[Generative Model] 단일 이미지 오토인코더 (0) | 2022.11.25 |