본문 바로가기
728x90
반응형
SMALL

tensorflow26

[Linux] NVIDIA GPU 사용을 위한 Ubuntu에 Tensorflow 설치 NVIDIA Driver  NVIDIA에서 제품에 맞는 드라이버를 설치한다. WSL2 설치  PowerShell에서 WLS2를 설치한다. wls --install PowerShell에서 nvidia-smi 명령으로 GPU 서버를 확인한다. Ubuntu-22.04를 사용한다. nvidia-smi Miniconda 설치 아래의 명령어를 터미널에 입력해 스크립트 파일을 다운로드 후에 실행한다. wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.shsudo bash Miniconda3-latest-Linux-x86_64.sh 경로를 “/home/{사용자 이름}/miniconda3”로 설정한다.  # conda 경로 설정export P.. 2024. 5. 28.
[Windows] NVIDIA GPU 사용을 위한 Window Native에 Tensorflow 설치 NVIDIA Driver  NVIDIA에서 제품에 맞는 드라이버를 설치한다. WSL2 설치  PowerShell에서 WLS2를 설치한다. wls --install PowerShell에서 nvidia-smi 명령으로 GPU 서버를 확인한다. Ubuntu-22.04를 사용한다. nvidia-smi Miniconda 설치 아래의 명령어를 터미널에 입력해 스크립트 파일을 다운로드 후에 실행한다. wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.shsudo bash Miniconda3-latest-Linux-x86_64.sh 경로를 “/home/{사용자 이름}/miniconda3”로 설정한다.  # conda 경로 설정export P.. 2024. 2. 15.
ImageDataGenerator 훈련 및 검증 데이터 분할 ImageDataGenerator 훈련 및 검증 데이터 분할 ImageDataGenerator를 사용할 때 훈련 데이터를 훈련 및 검증으로 분할한다. Keras에는 기계 학습 프로젝트에서 모든 종류의 일반적인 작업을 수행하는 데 필요한 많은 필수 유틸리티 기능 및 클래스가 번들로 제공된다. 일반적으로 사용되는 클래스 중 하나는 ImageDataGenerator이다. 문서에 설명된 대로 실시간 데이터 증대를 통해 텐서 이미지 데이터 배치를 생성한다. 데이터는 일괄적으로 반복된다. 지금까지는 훈련 이미지 폴더와 검증 이미지 폴더를 별도로 유지해도 괜찮다. 예를 들어, flow_from_directory 함수와 함께 사용할 이미지에 대해 두 개의 별도 폴더 구조를 생성하여 훈련 및 검증 데이터 세트를 직접 구.. 2023. 9. 6.
텐서플로우 (TensorFlow) Deep Learning and Neural Network 신경망은 최초의 기계 학습 모델 중 하나였다. 그 인기는 두 번 떨어졌고 이제 세 번째로 증가하고 있다. 딥러닝은 신경망의 사용을 의미한다. 딥러닝의 deep은 많은 숨겨진 계층이 있는 신경망을 의미한다. 신경망은 너무 오랫동안 존재해왔기 때문에 꽤 많은 짐을 가지고 있다. 연구자들은 많은 다른 훈련 알고리즘, 활성화/전달 기능 및 구조를 만들어 왔다. 신경망은 입력을 받아들여 출력을 만든다. 신경망에 대한 입력을 특징 벡터 (feature vector)라고 한다. 신경망에 대한 입력은 항상 고정된 길이이다. 이 벡터의 크기를 변경하는 것은 일반적으로 전체 신경망을 다시 만드는 것을 의미한다. 특징 벡터를 "벡터"라고 하지만 항상 그렇지는 않다... 2023. 7. 28.
[시각 지능] 합성곱 오토인코더 (Convolutional Autoencoder) 합성곱 오토인코더 (Convolutional Autoencoder) 합성곱 오토인코더 (Convolutional Autoencoder)는 오토인코더 (Autoencoder)의 일종으로, 이미지와 같은 고차원 데이터를 저차원으로 압축하고 복원하는 데 사용된다. 합성곱 오토인코더는 합성곱 계층 (convolutional layer)과 풀링 계층 (pooling layer)을 사용하여 입력 데이터의 공간적 정보를 보존하면서 압축한다. 이러한 합성곱 오토인코더는 이미지 처리 분야에서 많이 사용되며, 이미지 노이즈 제거, 이미지 생성 등에 활용된다. 라이브러리 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensor.. 2023. 5. 3.
Programming LSTM with Keras and TensorFlow Programming LSTM with Keras and TensorFlow 전방 연결을 가진 신경망은 항상 첫 번째 숨겨진 계층에 연결된 입력 계층으로 시작한다. 각 숨겨진 계층은 항상 다음 숨겨진 계층에 연결된다. 마지막 숨겨진 계층은 항상 출력 계층에 연결된다. 이러한 연결 방식이 이러한 네트워크를 "feed-forward"라고 부르는 이유이다. 반복 신경망은 역방향 연결도 허용되기 때문에 경직되지 않는다. 반복적인 연결은 층의 뉴런을 이전 층 또는 뉴런 자체에 연결한다. 대부분의 반복 신경망 아키텍처는 반복 연결에서 상태를 유지한다. 피드포워드 신경망은 어떤 상태도 유지하지 않는다. LSTM LSTM (Long Short Term Memory) 레이어는 심층 신경망과 함께 자주 사용하는 반복 단위.. 2022. 12. 6.
[Keras] tflite 변환 tflite 변환 케라스 모델은 딥러닝 모델을 개발하기 위한 고수준 라이브러리인 케라스를 이용하여 만든 모델이다. tensorflow의 tf.keras 모듈을 통해 케라스 모델을 바로 만들거나 SavedModel, HDF5 포맷으로 저장된 모델을 케라스 모델로 불러와서 tensorflow lite 모델로 변환할 수 있다 h5 파일을 pb 파일로 변환 from tensorflow import keras model = keras.models.load_model('model.h5', compile = False) export_path = './pb' model.save(export_path, save_format = "tf") pb 파일을 tflite 파일로 변환 saved_model_dir = './pb' .. 2022. 11. 24.
[AI] Basic Architecture TensorFlow TensorFlow는 텐서 (Tensor)를 흘려 보내면서 (Flow) 딥러닝 알고리즘을 수행하는 프레임워크이다. ① 사용자 친화적 (Keras as High Level API) ② 코드 가독성과 직관성을 높이는 Eager Execution 적용 Keras Keras 창시자 프랑소와 숄레 (François Chollet)가 TF 2.0 개발에 참여하였고, TF 2.0 에서 공식적이고 유일한 High-Level API로써 Keras가 선정되었다. 또한, 프랑소와 숄레는 앞으로 native Keras 보다는 tf.keras를 사용할 것을 권장하고 있다. 사용자 친근성 (User Friendliness) : 직관적인 API를 이용하면 ANN, CNN, RNN 또는 이를 조합한 딥러닝 모델을.. 2022. 7. 17.
[TensorFlow] 텐서 작업 텐서 연산 필요한 패키지 임포트 텐서 (Tensor) 생성 및 사용 GPU 가속기 사용 tf.data.Dataset 시연 텐서 텐서플로 모듈을 임포트한다. import tensorflow as tf 텐서는 다차원 배열이다. NumPy ndarray 객체와 유사하게 tf.Tensor 객체에는 데이터 유형과 형상이 있다. 또한, tf.Tensor는 가속기 메모리 (ex: GPU)에 상주할 수 있다. TensorFlow는 tf.Tensor를 소비하고 생성하는 풍부한 연산 라이브러리를 제공한다 (tf.add, tf.matmul, tf.linalg.inv 등). 이러한 연산은 기본 Python 유형을 자동으로 변환한다. 예를 들면, 다음과 같다. print(tf.add(1, 2)) print(tf.add([1, .. 2022. 6. 20.
[TensorFlow] CSV 전처리 (1) CSV 데이터 로드 파일에서 tf.data.Dataset로 CSV 데이터를 로드하는 방법의 예이다. 여기에서 사용된 데이터는 Titanic 승객 목록에서 가져온 것이다. 이 모델은 연령, 성별, 티켓 등급 및 단독 여행 여부와 같은 특성을 기반으로 승객의 생존 가능성을 예측한다. 설정 import functools import numpy as np import tensorflow as tf TRAIN_DATA_URL = "https://storage.googleapis.com/tf-datasets/titanic/train.csv" TEST_DATA_URL = "https://storage.googleapis.com/tf-datasets/titanic/eval.csv" train_file_path = tf.. 2022. 6. 16.
728x90
반응형
LIST