임베딩 전송 (Transferring Embedding)
임베딩 전송 (Transferring Embedding) 이제 간단한 원핫 인코딩을 수행하는 임베딩 룩업을 하드코딩하는 방법을 살펴본다. 원핫 인코딩은 입력된 정수 값 0, 1, 2를 각각 벡터 [1, 0, 0], [0, 1, 0], [0, 0, 1]로 변환한다. 다음 코드는 임베딩 레이어의 무작위 조회 값을 이 원핫 인코딩에서 영감을 얻은 조회 테이블로 대체했다. from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Embedding import numpy as np embedding_lookup = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) model = Sequent..
2024. 1. 11.