본문 바로가기
728x90
반응형
SMALL

python106

Dropping / Concatenating Dropping Fields 값이 없는 필드를 신경망에 삭제해야 한다. 다음 코드는 MPG 데이터 세트에서 이름 열을 제거한다. import os import pandas as pd df = pd.read_csv('auto-mpg.csv', na_values = ['NA', '?']) print(f"Before drop : {list(df.columns)}") df.drop('name', 1, inplace=True) print(f"After drop : {list(df.columns)}") Before drop : ['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'year', 'origin', 'name'] Aft.. 2023. 7. 27.
statsmodels statsmodels statsmodels는 통계 모델에 대한 기술 통계 및 추정 및 추론을 포함하여 통계 계산을 위해 scipy를 보완하는 Python 패키지이다. python -m pip install statsmodels Main Features 선형 회귀 모델 일반 최소 제곱 일반화된 최소 제곱 가중 최소제곱 자기회귀 오류가 있는 최소제곱 분위수 회귀 재귀적 최소제곱 효과 및 분산 성분이 혼합된 혼합 선형 모델 GLM: 모든 단일 매개변수 지수군 분포를 지원하는 일반화 선형 모델 이항 및 푸아송을 위한 베이지안 혼합 GLM GEE: 단방향 클러스터 또는 종단 데이터에 대한 일반화된 추정 방정식 개별 모델 로짓과 프로빗 다항 로짓 (MNLogit) 포아송 및 일반화 포아송 회귀 음이항 회귀 제로 팽.. 2023. 7. 18.
CatBoost CatBoost CatBoost는 Yandex에서 개발한 오픈 소스 소프트웨어 라이브러리이다. 이는 다른 기능 중에서 클래식 알고리즘과 비교하여 순열 기반 대안을 사용하여 범주형 기능을 해결하려고 시도하는 그레디언트 부스팅 프레임워크를 제공한다. pip install catboost import numpy from catboost import CatBoostRegressor dataset = numpy.array([[1,4,5,6], [4,5,6,7], [30,40,50,60], [20,15,85,60]]) train_labels = [1.2, 3.4, 9.5, 24.5] model = CatBoostRegressor(learning_rate=1, depth=6, loss_function='RMSE') .. 2023. 7. 12.
[SciPy] 영 위상 필터 (Zero-Phase Filter) 영 위상 필터 (Zero-Phase Filter) 영 위상 필터 (Zero-Phase Filter)는 신호 처리에서 사용되는 필터 중 하나이다. 이 필터는 신호를 두 번 처리하여 위상 지연을 제거하는 방법으로 작동한다. 영 위상 필터는 전체적인 신호의 위상을 유지하면서 주파수 응답을 변형시키는 필터이다. 이 필터는 주로 신호 처리에서 사용되며, 신호의 위상이 중요한 경우에 사용된다. Scipy에서의 기능은 선형 디지털 필터를 앞으로 한 번, 뒤로 한 번 총 두 번 적용한다. 결합된 필터는 위상이 0이고 필터 차수가 원본의 두 배이다. 이 기능는 2차 섹션에서 숫자 문제가 적기 때문에 대부분의 필터링 작업에서 sosflitflit (output='filter'를 사용한 필터 설계) 필터링 기능이 flitf.. 2023. 7. 10.
[Machine Learning] Histogram-Based Gradient Boosting Ensembles Gradient Boosting Ensembles 부스팅은 트리 모델을 순차적으로 앙상블에 추가하는 앙상블 학습 알고리즘의 클래스를 말한다. 앙상블에 추가된 각 트리 모델은 앙상블에 이미 존재하는 트리 모델에 의해 발생한 예측 오류를 수정하려고 시도한다. 그레이디언트 부스팅은 AdaBoost와 같은 부스팅 알고리즘을 통계 프레임워크로 일반화하는 것으로, 훈련 과정을 가법 모델로 처리하고 임의 손실 함수를 사용할 수 있게 하여 기술의 능력을 크게 향상시킨다. 이와 같이 그레이디언트 부스팅 앙상블은 대부분의 구조화된 (ex: 표 형식 데이터) 예측 모델링 작업에 사용되는 기술이다. 그레이디언트 부스팅이 실제로 매우 잘 수행되지만 모델의 교육 속도가 느릴 수 있다. 이는 여러 CPU 코어를 활용하여 앙상블 멤.. 2023. 7. 7.
[Audio Processing] librosa specshow librosa specshow import librosa as liimport librosa.displayimport numpy as npimport matplotlib.pyplot as pltimport scipy.signal as sig# load sample audiofile = li.ex('trumpet')aud, sr = li.load(file, sr=None)n_ftt = 512rsr = 11025# apply low pass filter before downsampling. Attenuate at resample rate divided by 2.cutoff = rsr / 2sos = sig.butter(10, cutoff, fs=sr, btype='lowpass', analog=False, .. 2023. 7. 5.
[Django] 북마크 앱 만들기 (1) 프로젝트 생성 django-admin startproject mysite . settings.py ALLOWED_HOSTS = [ 'localhost', '127.0.0.1', ] TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [ os.path.join(BASE_DIR, 'templates'), ], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.con.. 2023. 6. 28.
[Django] Books 어플리케이션 (2) URLconf books 앱 폴더에 urls.py 파일을 만들고 각 페이지에 맞는 URL을 매치한다. from django.urls import path from . import views app_name = 'books' urlpatterns = [ path('', views.BooksModelView.as_view(), name='index'), path('book/', views.BookList.as_view(), name='book_list'), path('author/', views.AuthorList.as_view(), name='author_list'), path('publisher/', views.PublisherList.as_view(), name='publisher_list'), ] 클.. 2023. 6. 27.
[Django] Books 어플리케이션 (1) 프로젝트에 books 앱 추가 python manage.py startapp books setting.py : 어플리케이션 등록 (서버에 반영) INSTALLED_APPS = [ "books.apps.BooksConfig", # 새로 만든 앱 추가 "polls.apps.PollsConfig", "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "django.contrib.staticfiles", ] models.py 데이터베이스에 사용할 데이터들의 형태를 정리하기 위해 books 폴더의 models.py를 다음과 같이 수.. 2023. 6. 27.
NeuroKit2 NeuroKit2 NeuroKit2는 고급 생체 신호 처리 루틴에 쉽게 액세스할 수 있는 사용자 친화적인 패키지이다. 프로그래밍이나 생의학 신호 처리에 대한 광범위한 지식이 없는 연구원과 임상의는 단 두 줄의 코드로 생리학적 데이터를 분석 할 수 있다. pip install neurokit2 https://neuropsychology.github.io/NeuroKit/introduction.html Overview — NeuroKit2 0.2.5 documentation Overview The Python Toolbox for Neurophysiological Signal Processing NeuroKit2 is a user-friendly package providing easy access to a.. 2023. 6. 26.
728x90
반응형
LIST