본문 바로가기
Brain Engineering/MNE

Machine Learning : Group-Level Analysis (Part - 1) (2)

by goatlab 2022. 4. 5.
728x90
반응형
SMALL

Example #2 : Classification between Unpleasant and Neutral Events

 

불쾌한 사건과 중립적인 사건 사이의 분류 작업에 첫 번째 예의 동일한 단계가 적용된다.

 

results_perParticipant_UN = []
model_names = [ 'LR', 'LDA'] 
kfold = StratifiedKFold(n_splits=3, random_state=42)
for i in range(len(ids)):
    # Linear Discriminant Analysis
    clf_lda_pip = make_pipeline(Vectorizer(), StandardScaler(), LinearDiscriminantAnalysis(solver='svd'))
    #Logistic Regression
    clf_lr_pip = make_pipeline(Vectorizer(), StandardScaler(), LogisticRegression(penalty='l1', random_state=42))
    
    models = [ clf_lr_pip, clf_lda_pip]
    scores = applyCrossValidation(models, model_names, data_UN[i], labels_UN[i], kfold)
    results_perParticipant_UN.append(list(scores))
    
avg_results_perParticipant_UN = calculateAvgResults(model_names, results_perParticipant_UN)
#sort ids results together to plot nicely.
ids_sorted, avg_results_perParticipant_UN = zip(*sorted(zip(ids, avg_results_perParticipant_UN)))

plotCVScores_perParticipant(ids_sorted, avg_results_perParticipant_UN, model_names)

applyStatisticalTest(avg_results_perParticipant_UN, model_names)
p = 1.570510001975002e-05 for Wilcoxon test between LR and LDA

 

첫 번째 예와 유사하게 파생된 p-값이 0.05보다 작기 때문에 불쾌한 사건과 중립적인 사건을 분류하는 작업에서 LDA의 성능과 Logistic Regression의 성능 사이에 상당한 차이가 있다는 결론을 내릴 수 있다. 따라서 이 작업에서도 로지스틱 회귀가 더 잘 수행되었다고 결론지을 수 있다.

 

Example #3 : Classification between Pleasant and Neutral Events

 

이 예에서 유쾌한 사건과 중립적인 사건 작업 사이의 이전 예 분류에서 동일한 단계를 따를 것이다.

 

results_perParticipant_NP = []
model_names = [ 'LR', 'LDA'] 
kfold = StratifiedKFold(n_splits=3, random_state=42)
for i in range(len(ids)):
    # Linear Discriminant Analysis
    clf_lda_pip = make_pipeline(Vectorizer(), StandardScaler(), LinearDiscriminantAnalysis(solver='svd'))
    #Logistic Regression
    clf_lr_pip = make_pipeline(Vectorizer(), StandardScaler(), LogisticRegression(penalty='l1', random_state=42))
    
    models = [ clf_lr_pip, clf_lda_pip]
    scores = applyCrossValidation(models, model_names, data_NP[i], labels_NP[i], kfold)
    results_perParticipant_NP.append(list(scores))

avg_results_perParticipant_NP = calculateAvgResults(model_names, results_perParticipant_NP)
#sort ids results together to plot nicely.
ids_sorted, avg_results_perParticipant_NP = zip(*sorted(zip(ids, avg_results_perParticipant_NP)))  

plotCVScores_perParticipant(ids_sorted, avg_results_perParticipant_NP, model_names)

applyStatisticalTest(avg_results_perParticipant_NP, model_names)
p = 1.570510001975002e-05 for Wilcoxon test between LR and LDA

 

https://neuro.inf.unibe.ch/AlgorithmsNeuroscience/Tutorial_files/ApplyingMachineLearningMethods_2.html

 

Group-Level Analysis

Group-Level Analysis Tutorial #5: Applying Machine Learning Methods to EEG Data on Group Level In this tutorial, we are performing the same classi...

neuro.inf.unibe.ch

 

728x90
반응형
LIST