[NumPy] numpy 원소 재배열
numpy.flip(m, axis=None) 뒤집는 (flip) 함수이다. 영상 처리에서 flip 연산은 주로 2개이다. 수직축을 중심으로 뒤집는 vertical flip, 그리고 수평축을 중심으로 뒤집는 horizontal flip이 있다. 이 함수는 axis에 따라서 다양한 flip 연산이 구현되어 있다. a = np.arange(1, 10).reshape((3, 3)) # array([[3, 2, 1], [6, 5, 4], [9, 8, 7]]) np.flip(a, 0) # array([[7, 8, 9], [4, 5, 6], [1, 2, 3]]) np.flipud(a) # array([[7, 8, 9], [4, 5, 6], [1, 2, 3]]) b = np.arange(1, 10).reshape(3,..
2021. 12. 30.
[NumPy] numpy 원소 제거 및 추가
np.insert(arr, obj, values, axis=None) 값을 추가하는 함수이다. a = np.array([[1, 1], [2, 2], [3, 3]]) # array([[1, 1], [2, 2], [3, 3]]) np.insert(a, 1, 5) # array([1, 5, 1, 2, 2, 3, 3]) np.insert(a, 1, 5, axis=0) # array([[1, 1], [5, 5], [2, 2], [3, 3]]) np.insert(a, 1, 5, axis=1) # array([[1, 5, 1], [2, 5, 2], [3, 5, 3]]) np.append(arr, values, axis=None) insert와 유사하게 배열을 삽입해주는 함수이다. insert 함수는 특정 인덱스에 원..
2021. 12. 29.
[NumPy] asarray()
asarray() 리스트 및 튜플을 Numpy 배열로 변환하는 방법 import numpy as np # from list to numpy array list_sample = [1, 2, 3, 4, 5] print(list_sample) # [1, 2, 3, 4, 5] numpy_sample = np.asarray(list_sample) print(numpy_sample) # [1 2 3 4 5] # from tuple to numpy array list_sample = (1, 2, 3, 4, 5) print(list_sample) # (1, 2, 3, 4, 5) numpy_sample = np.asarray(list_sample) print(numpy_sample) # [1 2 3 4 5] import..
2021. 12. 27.
[NumPy] numpy.ndarray
배열 생성 import numpy as np # 다차원 numpy 배열 생성 a = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) # 배열의 shape print(a.shape) # (3, 3) # 배열 reshape b = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]) print(b.shape) # 16 b = b.reshape(4, 4) print(b) # [[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]] print(b.shape) # (4, 4) 배열 접근 (indexing) import numpy as np # numpy 배열 접근 a = np.array([[0, 1,..
2021. 12. 27.
넘파이 (NumPy)
넘파이 (NumPy) 행렬이나 일반적으로 대규모 다차원 배열을 쉽게 처리 할 수 있도록 지원하는 파이썬의 라이브러리이다. NumPy는 데이터 구조 외에도 수치 계산을 위해 효율적으로 구현된 기능을 제공한다. numpy의 다차원 배열 타입은 numpy.ndarray이다. import numpy as np # 배열 생성 x = np.array([1, 2, 3]) x # [1, 2, 3] y = np.arange(10) # like Python's range, but returns an array y # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] z = np.array([0, 1, 2], dtype='float32') z # [0. 1. 2.] a = np.array([1, 2, 3, 6]) b ..
2021. 12. 27.