본문 바로가기
728x90
반응형
SMALL

전체 글1632

[Signal] 신호 처리, 변환 및 추출 PROCESSING AND TRANSFORMATION OF SIGNALS 신호 분석의 목적에 따라 여러 가지 방법으로 신호를 분석하거나 처리할 수 있다. 각 처리 기법은 신호의 특정 특성을 추출하고 강조하려고 시도한다. 예를 들어, 특정 연도 동안 추운 날의 수를 보기 위해 온도 신호가 추운 날씨를 식별하는 임계값 아래로 떨어지는 날의 수를 쉽게 셀 수 있다. 임계값은 신호의 일부 특성을 강조하기 위해 신호를 조작할 수 있는 여러 가지 다른 처리 기법 및 변환의 한 예일 뿐이다. 일부 변환은 시간 영역에서 신호를 표현하고 평가하는 반면, 다른 변환은 주파수 영역이 중요한 다른 "영역"에 초점을 맞추고 있다. 신호에서 특정 유용한 정보를 강조하는 데 있어 주파수 영역의 성능을 확인하려면 특정 기계에서 고장.. 2023. 7. 31.
[Signal] 아날로그, 이산 및 디지털 신호 아날로그 신호 (ANALOG SIGNALS) 이 신호들은 시간과 진폭에서 모두 연속적이다. 이것은 시간과 진폭 축이 모두 연속적인 축이고 임의의 실수를 취할 수 있음을 의미한다. 다시 말해서, 임의의 주어진 실수 값에서 진폭 값 g(t)는 실수의 연속적인 간격에 속하는 어떤 수를 취할 수 있다. 이러한 신호의 예는 일정 시간 동안 아날로그 수은 온도계를 사용하여 획득한 체온 측정값이다. 이러한 온도계에서 온도는 항상 측정되며 온도 값 (즉, 수은 기둥의 높이)은 연속적인 숫자 간격에 속한다. 이산 신호 (DISCRETE SIGNALS) 이산 신호에서 진폭 축은 연속적이지만 시간 축은 이산적이다. 이것은 아날로그 신호와 달리 수량의 측정은 특정 시간에만 가능하다는 것을 의미한다. 체온이 매초, 심지어 몇 .. 2023. 7. 31.
신호 (SIGNAL) 신호란 신호의 정의는 신호 처리 능력을 이해하는 데 중요한 역할을 한다. 1-D 신호는 양의 추세와 변화를 설명하는 숫자의 순서이다. 서로 다른 시간에 찍은 물리량의 연속 측정은 과학과 공학에서 만나는 일반적인 신호를 만든다. 신호의 숫자의 순서는 종종 "시간"의 측정 (또는 사건) 순서에 의해 결정된다. 연속된 날에 수집된 체온 기록의 순서는 시간의 1-D 신호의 예를 형성한다. 신호의 특성은 기록된 숫자의 진폭뿐만 아니라 숫자의 순서에 있으며 모든 신호 처리 도구의 주요 작업은 사람의 눈에 명확하게 보이지 않을 수 있는 중요한 지식을 추출하기 위해 신호를 분석하는 것이다. 모든 1-D 신호가 반드시 시간적으로 순서가 매겨지는 것은 아니라는 점을 강조해야 한다. 예를 들어, 금속 막대를 따라 서로 다른.. 2023. 7. 31.
[Matplotlib] 눈금 시간 설정 눈금 시간 설정 데이터프레임에서 str 타입의 시간을 축으로 사용하기 위해 pd.to_datetime() 함수를 사용한다. 이 함수를 사용하여 문자열을 datetime64 형식으로 변환하고 데이터프레임의 x축으로 사용할 수 있다. df['Time'] = pd.to_datetime(df['time']) import matplotlib.pyplot as plt import matplotlib.dates as mdates fig, ax = plt.subplots() ax.plot(df['Time'], df['Value']) ax.set_xlabel('Time') ax.set_ylabel('Value') ax.set_title('Time vs Value') # x축 눈금 간격 설정 (1시간 간격으로 눈금 표시).. 2023. 7. 28.
뉴런의 유형 (1) Types of Neurons 모든 신경망이 모든 종류의 뉴런을 사용하는 것은 아니다. 하나의 뉴런이 여러 종류의 뉴런의 역할을 채우는 것도 가능하다. 신경망에는 보통 네 가지 종류의 뉴런이 있다. • 입력 뉴런 : 각 입력 뉴런을 특징 벡터의 한 요소에 매핑한다. • 은닉 뉴런 : 은닉 뉴런은 신경망이 추상적이고 입력을 출력으로 처리할 수 있도록 한다. • 출력 뉴런 : 각 출력 뉴런은 출력의 한 부분을 계산한다. • 바이어스 뉴런 : 선형 방정식의 y 절편과 유사하게 작업한다. 그리고 각 뉴런을 층으로 배치한다. • 입력층 : 입력층는 데이터 세트로부터 특징 벡터를 받아들인다. 입력층는 일반적으로 바이어스 뉴런을 가진다. • 출력층 : 신경망으로부터의 출력이다. 출력층는 바이어스 뉴런을 가지지 않는다.. 2023. 7. 28.
뉴런과 층 (Neurons and Layers) Neurons and Layers 대부분의 신경망 구조는 어떤 유형의 뉴런을 사용한다. 많은 다른 신경망이 존재하고 프로그래머들은 실험적인 신경망 구조를 도입한다. 결과적으로 모든 신경망 아키텍처를 포함할 수는 없다. 그러나 신경망 구현 사이에는 몇 가지 공통점이 있다. 신경망 알고리즘은 일반적으로 이러한 단위를 뉴런이라고 부를 수도 있고 아닐 수도 있지만 개별적으로 상호 연결된 단위로 구성된다. 신경망 처리 장치에 대한 이름은 문헌 소스에 따라 다르다. 노드, 뉴런 또는 단위라고 할 수 있다. 인공 뉴런은 다른 뉴런일 수 있는 하나 이상의 소스로부터 입력을 받거나 컴퓨터 프로그램으로부터 네트워크에 입력된 데이터를 수신한다. 이 입력은 일반적으로 부동 소수점 또는 이진수이다. 종종 이진 입력은 true .. 2023. 7. 28.
텐서플로우 (TensorFlow) Deep Learning and Neural Network 신경망은 최초의 기계 학습 모델 중 하나였다. 그 인기는 두 번 떨어졌고 이제 세 번째로 증가하고 있다. 딥러닝은 신경망의 사용을 의미한다. 딥러닝의 deep은 많은 숨겨진 계층이 있는 신경망을 의미한다. 신경망은 너무 오랫동안 존재해왔기 때문에 꽤 많은 짐을 가지고 있다. 연구자들은 많은 다른 훈련 알고리즘, 활성화/전달 기능 및 구조를 만들어 왔다. 신경망은 입력을 받아들여 출력을 만든다. 신경망에 대한 입력을 특징 벡터 (feature vector)라고 한다. 신경망에 대한 입력은 항상 고정된 길이이다. 이 벡터의 크기를 변경하는 것은 일반적으로 전체 신경망을 다시 만드는 것을 의미한다. 특징 벡터를 "벡터"라고 하지만 항상 그렇지는 않다... 2023. 7. 28.
그룹화, 정렬 및 섞기 (2) Sorting a Data Set 모델을 학습하기 전에, 훈련 및 전처리 중에 데이터 세트를 셔플하는 것이 항상 좋지만, 데이터 세트를 정렬할 수도 있다. 데이터 세트를 정렬하면 하나 이상의 열에 대해 오름차순 또는 내림차순으로 행을 정렬할 수 있다. import os import pandas as pd import numpy as np np.random.seed(42) df = pd.read_csv('auto-mpg.csv', na_values = ['NA', '?']) df = df.sort_values(by = 'name', ascending = True) print(f"The first car is : {df['name'].iloc[0]}" ) pd.set_option('display.max_co.. 2023. 7. 27.
그룹화, 정렬 및 섞기 (1) Grouping, Sorting, and Shuffling 전체 판다스 데이터 프레임에 영향을 미치는 몇 가지 방법이 있다. 이러한 기술을 통해 데이터 세트를 그룹화, 정렬 및 셔플할 수 있다. 이는 모두 데이터 전처리 및 평가를 위한 필수 작업이다. Shuffling a Dataset 데이터 세트의 행 순서대로 숨어 있는 정보가 있을 수 있다. 시계열 데이터를 다루고 있지 않는 한 행의 순서는 유의하지 않아야 한다. 그러나 순서의 데이터를 가지고 있는 것이 문제가 될 수 있다. 데이터를 훈 및 검증으로 분할하는 경우를 고려해야 한다. 데이터를 k겹 교차 검증으로 분리하는 경우에도 문제가 발생할 수 있다. 이러한 문제 때문에 데이터 세트를 셔플하는 것이 중요하다. 종종 셔플과 재인덱싱이 함께 수행된다. .. 2023. 7. 27.
타겟 인코딩 (Target Encoding) Removing the First Level pd.concat 함수에는 drop_first라는 매개 변수도 포함되어 있는데, 첫 번째 수준을 제거함으로써 k-1 더미를 k개의 범주형 수준에서 벗어나게 할지 여부를 지정한다. 이 경우 첫 번째 수준인 area_a를 제거하고자 하는 이유는 보통 사용되지 않는 [0,0,0]의 인코딩을 사용함으로써 더 효율적인 인코딩을 제공한다. area를 단지 세 개의 열로 인코딩하고 a의 범주형 값을 [0,0,0]으로 매핑한다. import pandas as pd dummies = pd.get_dummies(['a', 'b', 'c', 'd'], prefix = 'area', drop_first = True) print(dummies) 위의 데이터에서 볼 수 있듯이 area.. 2023. 7. 27.
728x90
반응형
LIST