728x90 반응형 SMALL convolution3 [Fourier Transform] 1차원 푸리에 변환의 특성 (1) PROPERTIES OF ONE-DIMENSIONAL FOURIER TRANSFORM FT는 광범위한 시간 신호의 FT를 계산할 뿐만 아니라 이 변환의 주요 개념을 이해하는 데 도움이 되는 몇 가지 매우 흥미로운 일반적인 특성을 가지고 있다. Signal Shift 이 성질에 따르면, 신호가 시간적으로 이동하면 FT의 크기는 (모든 주파수에 대해) 동일하게 유지된다. 구체적으로, 신호 g(t)와 임의의 시간 이동 t0에 대해 식의 복소 지수의 크기는 1로 평가되므로, FT의 크기는 g(t)의 시간 이동 t0 이동과 독립적이라는 것이 명백하다. 이 관찰은 직관과 일치한다. 예를 들어, 오늘 한 번, 내일 한 번 음악을 들을 수 있고, 그리고 나서 며칠 후에 같은 음악을 들을 수 있다면, 그 음악이 다르게 .. 2023. 7. 31. [시각 지능] 컨벌루션 (Convolution) 컨벌루션 (Convolution) 수학 (특히 기능 분석)에서 컨벌루션은 함수의 모양이 다른 하나에 의해 수정되는 방식을 나타낸다. 컨볼루션이라는 용어는 결과 함수와 계산 프로세스를 모두 나타낸다. 그것은 하나가 반전되고 이동된 후 두 함수의 곱의 적분으로 정의된다. 적분은 모든 shift 값에 대해 평가되어 컨볼루션 함수를 생성한다. from tensorflow.keras.datasets import mnist import matplotlib.pyplot as plt # mnist data download (x_train, y_train), (x_test, y_test) = mnist.load_data() plt.imshow(x_train[0], cmap='gray') # 1번째 데이터 plt.show.. 2022. 7. 31. [TensorFlow] 레이어 (Layer) 레이어 (Layer) keras에서 사용되는 레이어(layer, 층)는 신경망 모델을 구성하는 주요한 요소이다. Feature Extraction (특징 추출) feature extraction은 초기 데이터 set를 처리하기 위해 더 관리하기 쉬운 그룹으로 축소하는 차원 감소 프로세스이다. 데이터 양을 효과적으로 줄이면서 원본 데이터 set를 정확하고 완전하게 설명하는 방법이라고 할 수 있다. Flatten Layer input으로 사용하기 위해 행렬이 아닌 list로 만들어주는 과정이 필요한데 flatten layer가 그 역할을 한다. flatten layer는 추출된 주요 특징을 전결합층에 전달하기 위해 1차원 자료로 바꿔주는 layer이다. 이미지 형태의 데이터를 list 형태로 flatten하.. 2021. 12. 22. 이전 1 다음 728x90 반응형 LIST