728x90 반응형 SMALL 임베딩 훈련2 임베딩 훈련 (Training Embedding) 임베딩 훈련 (Training Embedding) 레스토랑 리뷰를 긍정 또는 부정에 따라 분류하는 신경망을 만든다. 이 신경망은 여기에 주어진 것과 같은 문자열을 입력으로 받을 수 있다. 이 코드에는 각 리뷰에 대한 긍정 또는 부정 레이블도 포함된다. from numpy import array from tensorflow.keras.preprocessing.text import one_hot from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Flatten, Embedding, Dense # .. 2024. 1. 11. 임베딩 전송 (Transferring Embedding) 임베딩 전송 (Transferring Embedding) 이제 간단한 원핫 인코딩을 수행하는 임베딩 룩업을 하드코딩하는 방법을 살펴본다. 원핫 인코딩은 입력된 정수 값 0, 1, 2를 각각 벡터 [1, 0, 0], [0, 1, 0], [0, 0, 1]로 변환한다. 다음 코드는 임베딩 레이어의 무작위 조회 값을 이 원핫 인코딩에서 영감을 얻은 조회 테이블로 대체했다. from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Embedding import numpy as np embedding_lookup = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) model = Sequent.. 2024. 1. 11. 이전 1 다음 728x90 반응형 LIST