본문 바로가기
728x90
반응형
SMALL

weight3

전이 학습 (Transfer Learning) 전이 학습 (Transfer Learning) 전이 학습은 신경망을 처음부터 훈련하는 대신 미리 로드된 가중치 세트로 훈련을 시작한다. 일반적으로 미리 훈련된 신경망의 최상위 레이어를 제거하고 새로운 최상위 레이어로 다시 훈련한다. 이전 신경망의 레이어는 훈련으로 인해 가중치가 변경되지 않도록 잠긴다. 새로 추가된 레이어만 학습된다. 대규모 이미지 데이터 세트에 대한 신경망을 훈련하려면 많은 컴퓨팅 성능이 필요할 수 있다. Google, Facebook, Microsoft 및 기타 기술 기업들은 다양한 애플리케이션을 위한 고품질 신경망을 훈련하기 위해 GPU 어레이를 활용하고 있다. 이러한 가중치를 신경망으로 전송하면 상당한 노력과 계산 시간을 절약할 수 있다. 사전 학습된 모델이 구현하려는 애플리케이션.. 2024. 2. 13.
[Keras] model / weight 저장 및 불러오기 model / weight 저장 및 불러오기 keras에서 model과 weight를 저장 및 불러오는 방법을 살펴보자. ◦ model 저장 및 불러오기 (json / yaml) ◦ weights 저장 및 불러오기 (h5df) ◦ 둘 다 저장 및 불러오기 (h5) 각각의 방법들은 독립적이다. model 저장 및 불러오기 # json으로 model 저장 # layer layer = keras.layers.Dense(3, activation="relu") layer_config = layer.get_config() new_layer = keras.layers.Dense.from_config(layer_config) # Sequential model model = keras.Sequential([keras.I.. 2021. 12. 21.
[ANN] 퍼셉트론 (Perceptron) 사람의 뉴런 두뇌의 가장 작은 정보처리 단위이다. 세포체 (cell body)는 간단한 연산하며 수상돌기 (dendrite)는 신호 수신, 축삭 (axon)은 처리 결과를 전송한다. 사람은 1011개 정도의 뉴런을 가지며, 뉴런은 1000개 가량 다른 뉴런과 연결되어 있어 1014개 정도 연결되어 있다. 컴퓨터 인간의 두뇌 처리 소자의 개수 10^8개의 트랜지스터 10^10개의 뉴런 처리 소자의 속도 10^12Hz 10^2Hz 학습 기능 없음 있음 계산 형태 중앙 집중식, 순차적 처리 분산 병렬 처리 뉴런의 기본 동작 신호를 받아들이고, 이 신호가 축삭 돌기를 지나 축삭 말단으로 전달한다. 축삭 돌기를 지나는 동안 신호가 약해지거나, 너무 약해서 축삭 말단까지 전달되지 않거 나 혹은 강하게 전달되기도 한.. 2021. 12. 10.
728x90
반응형
LIST