본문 바로가기
728x90
반응형
SMALL

styleGAN2

StyleGAN을 위한 이미지 전처리 StyleGAN을 위한 이미지 전처리 dlib를 사용하여 눈 위치를 기준으로 소스 이미지와 대상 이미지를 중앙에 배치하고 자른다. 이 작업을 수행하기 위해 두 개의 함수를 만든다. 첫 번째는 dlib를 호출하여 인물의 눈 위치를 찾는다. 두 번째 함수는 눈 위치를 사용해 이미지의 중심을 눈 주위로 맞춘다. 정확히 중앙에 맞추지 않고 원래 StyleGAN 훈련 세트와 비슷하게 중앙에서 약간 오프셋을 둔다. 이 오프셋은 생성된 StyleGAN 얼굴의 눈을 감지하여 결정다. 눈 사이의 거리를 통해 얼굴이 얼마나 큰지 알 수 있으며, 이를 통해 이미지의 크기를 일관되게 조정할 수 있다. def find_eyes(img): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) rects.. 2024. 2. 14.
Transfer Learning for Facial Points and GANs Transfer Learning for Facial Points and GANs 신경망을 사용하여 얼굴 특징, 특히 개인의 눈 위치를 감지하는 방법이 있다. 눈의 위치를 파악하면 인물 사진을 일관성 있게 자를 수 있다. GAN은 무작위 벡터를 사실적인 인물 사진으로 변환할 수 있다. 그 반대로 실제 사진을 숫자 벡터로 변환할 수도 있다. 두 이미지를 이러한 벡터로 변환하면 두 이미지 사이를 변환하는 비디오를 제작할 수 있다. NVIDIA는 눈이 항상 같은 위치에 있도록 일관되게 잘린 인물 사진을 대상으로 StyleGAN을 훈련했다. 이미지를 벡터로 성공적으로 변환하려면 NVIDIA가 크롭을 사용한 방식과 유사하게 이미지를 크롭해야 한다. 여기에 제시된 코드를 사용하면 시작 이미지와 끝 이미지를 선택하고 .. 2024. 2. 14.
728x90
반응형
LIST