본문 바로가기
728x90
반응형
SMALL

feature vector2

딥러닝을 위한 특징 벡터 인코딩 딥러닝을 위한 특징 벡터 인코딩 신경망은 다양한 유형의 데이터를 받아들일 수 있다. 테이블 형식의 데이터는 Microsoft Excel에서 일반적으로 볼 수 있는 데이터이다. 신경망에는 숫자 입력이 필요하다. 이 숫자 형식을 특징 벡터 (feature vector)라고 한다. 각 입력 뉴런은 이 벡터로부터 하나의 특징 (또는 열)을 받는다. 훈련 데이터의 각 행은 일반적으로 하나의 벡터가 된다. import pandas as pd pd.set_option ('display.max_columns', 7) pd.set_option ('display.max_rows', 5) df = pd.read_csv("https://data.heatonresearch.com/data/t81-558/jh-simple-dat.. 2023. 11. 7.
텐서플로우 (TensorFlow) Deep Learning and Neural Network 신경망은 최초의 기계 학습 모델 중 하나였다. 그 인기는 두 번 떨어졌고 이제 세 번째로 증가하고 있다. 딥러닝은 신경망의 사용을 의미한다. 딥러닝의 deep은 많은 숨겨진 계층이 있는 신경망을 의미한다. 신경망은 너무 오랫동안 존재해왔기 때문에 꽤 많은 짐을 가지고 있다. 연구자들은 많은 다른 훈련 알고리즘, 활성화/전달 기능 및 구조를 만들어 왔다. 신경망은 입력을 받아들여 출력을 만든다. 신경망에 대한 입력을 특징 벡터 (feature vector)라고 한다. 신경망에 대한 입력은 항상 고정된 길이이다. 이 벡터의 크기를 변경하는 것은 일반적으로 전체 신경망을 다시 만드는 것을 의미한다. 특징 벡터를 "벡터"라고 하지만 항상 그렇지는 않다... 2023. 7. 28.
728x90
반응형
LIST