본문 바로가기
728x90
반응형
SMALL

ensenble3

[Machine Learning] Boosting Methods (3) LightBoost LGBM (Light Gradient Boosting Machine)은 2017년 마이크로소프트에서 처음 출시되었으며 사용자가 선호하는 또 다른 Gradient Boosting 방법이며 의사 결정 트리 기반이다. 다른 방법과의 핵심적인 차이점은 잎을 기준으로 트리를 분할한다는 것이다. 즉, 포인트 촬영에 필요한 단위를 감지하고 중지할 수 있다 (다른 것은 깊이 기반 또는 레벨 기반임). LGBM은 잎 기반이므로 오차를 줄여 정확도와 속도를 높이는 측면에서 매우 효과적인 방법이다. 특수 알고리즘을 사용하여 범주형 데이터를 분할할 수 있지만 열의 문자열 이름 대신 인덱스와 같은 정수 값을 입력해야 한다. import numpy as np from time import time from l.. 2023. 7. 11.
[Machine Learning] Boosting Methods (2) XGBoost XGBoost (Extreme Gradient Boost)는 2014년 Tianqi Chen에 의해 처음 개발되었으며 그레디언트 부스트보다 훨씬 빠르기 때문에 선호되는 부스팅 방법이다. XGBoost는 확장 가능하고 매우 정확한 그레디언트 부스팅 구현으로 트리 알고리듬을 강화하기 위한 컴퓨팅 성능의 한계를 푸시하며 주로 기계 학습 모델 성능 및 계산 속도를 활성화하기 위해 구축된다. XGBoost를 사용하면 GBDT와 같이 순차적으로 트리가 아닌 병렬로 구축된다. 그것은 그레디언트 값을 스캔하고 이러한 부분 합계를 사용하여 훈련 세트에서 가능한 모든 분할에서 분할의 품질을 평가하는 level-wise (수준별) 전략을 따른다. 포함된 하이퍼파라미터 덕분에 정규화 하이퍼파라미터가 과적합을 방.. 2023. 7. 11.
[Machine Learning] Boosting Methods (1) Boosting Methods 앙상블 학습에서는 여러 학습 알고리즘으로 모델을 가장 성공적으로 훈련시키는 것을 목표로 한다. 앙상블 학습 중 하나인 배깅 방법에서는 동일한 데이터 세트의 서로 다른 하위 샘플에 두 개 이상의 모델을 병렬로 적용했다. 또한, 다른 방법이며 실제로 자주 사용되는 부스팅은 병렬 대신 순차적으로 구축되며 모델 훈련뿐만 아니라 알고리즘 훈련을 목표로 한다. 약한 알고리즘은 모델을 훈련시킨 다음 훈련 결과에 따라 재구성되고 학습하기 쉬워진다. 이 수정된 모델은 다음 알고리즘으로 전송되고 두 번째 알고리즘은 첫 번째 알고리즘보다 쉽게 학습된다. AdaBoost Adaptive Boost (Adaboost)는 의사 결정 나무에 기반한 분계점이 할당되고 분계점에 따라 예측이 이루어진다. .. 2023. 7. 11.
728x90
반응형
LIST