728x90 반응형 SMALL YOLOv54 [FastAPI] 객체 탐지하기 FastAPI 서버 구축 GET 요청을 수락하고 localhost:8000에서 사용자가 이미지를 업로드한다. 그 다음 yolo 모델을 선택하고 POST를 통해 해당 데이터를 제출한다. POST 요청을 수락하고 입력 이미지에서 yolo 모델을 실행하고 JSON 출력을 반환한다. from fastapi import FastAPI, Request, Form, File, UploadFile from fastapi.responses import HTMLResponse from PIL import Image from io import BytesIO import torch app = FastAPI() @app.get("/") def read_root(): return "FastAPI" @app.post("/predi.. 2023. 7. 25. [Object Detection] YOLOv5 커스텀 데이터 학습 YOLOv5 커스텀 데이터 학습 yolov5에서 git clone하거나 zip 파일로 다운한다. 데이터셋 구조 데이터는 아래와 같이 이미지 파일이 있는 이미지와 바운딩 박스 정보가 있는 txt 라벨 폴더로 구성하고 각 폴더에 부여하고자 하는 정답 폴더로 구분한다. dataset/ ├── images/ │ ├── class1/ │ │ ├── img1.jpg │ │ ├── img2.jpg │ │ ├── ... │ ├── class2/ │ │ ├── img1.jpg │ │ ├── img2.jpg │ │ ├── ... │ ├── class3/ │ │ ├── img1.jpg │ │ ├── img2.jpg │ │ ├── ... ├── labels/ │ ├── class1/ │ │ ├── img1.txt │ │ ├─.. 2023. 6. 5. [시각 지능] Roboflow Roboflow Roboflow는 개발자가 기술이나 경험에 관계없이 자신의 컴퓨터 비전 애플리케이션을 구축할 수 있도록 지원한다. 원시 이미지를 훈련된 맞춤형 컴퓨터 비전 모델로 변환하고 애플리케이션에서 사용하기 위해 배포하는 데 필요한 모든 도구를 제공한다. 현재 Roboflow는 객체 감지 및 분류 모델을 지원한다. https://public.roboflow.com/object-detection/mask-wearing/4에서 포맷을 YOLO v5 Pytorch로 다운로드하고 파일 이름을 Mask_Data.zip으로 변경한다. YOLOv5 설치 # Colab root dir ROOT_DIR = '/content' import os YOLOv5_ROOT_DIR = os.path.join(ROOT_DIR,.. 2022. 9. 4. [Object Detection] YOLOv5 YOLOv5 YOLO는 'You only look once'의 약자로 이미지를 그리드 시스템으로 분할하는 객체 감지 알고리즘이다. 그리드의 각 셀은 자체 내에서 개체를 감지하는 역할을 한다. YOLO는 속도와 정확성으로 인해 가장 유명한 객체 감지 알고리즘 중 하나이다. YOLOv5🚀COCO 데이터 세트에서 사전 훈련된 객체 감지 아키텍처 및 모델이며, 수천 시간의 연구 및 개발을 통해 학습한 교훈과 모범 사례를 통합하여 미래 비전 AI 방법에 대한 Ultralytics 오픈 소스 연구가 있다. YOLOv4 출시 직후 Glenn Jocher는 Pytorch 프레임워크를 사용하여 YOLOv5를 도입했다. 오픈 소스 코드는 GitHub 에서 사용할 수 있다. YOLOv5 설치 구글 코랩에서 진행한다. %cd.. 2022. 9. 4. 이전 1 다음 728x90 반응형 LIST