728x90 반응형 SMALL Training2 [XGBoost] Python Package Introduction (2) 매개변수 설정 XGBoost는 쌍 목록이나 사전을 사용하여 매개변수를 설정할 수 있다. 1. Booster parameters param = {'max_depth': 2, 'eta': 1, 'objective': 'binary:logistic'} param['nthread'] = 4 param['eval_metric'] = 'auc' 2. 여러 평가 지표를 지정할 수도 있다. param['eval_metric'] = ['auc', 'ams@0'] # alternatively: # plst = param.items() # plst += [('eval_metric', 'ams@0')] 3. 성능을 관찰하도록 설정된 유효성 검사 지정 evallist = [(dtest, 'eval'), (dtrain, 'tra.. 2022. 5. 9. Material and Methods (2) Time Distributed Multivariate Network 시간적 수면 단계 분류 (k>0)를 수행하기 위해 제안하는 시간 분산 다변량 네트워크를 설명한다. 그것은 이전에 제시된 다변량 네트워크 아키텍처를 기반으로 하고 시간적 맥락을 고려할 수 있는 시간에 그것을 배포한다. 실제로 등급 N2의 표본은 다른 N2 표본에 가깝지만 N1 또는 N3 표본에 가까울 가능성이 매우 높다. 관심 샘플 전후의 신호의 통계적 특성을 고려하기 위해, 관심 샘플 이전 또는 이후 여러 시간 세그먼트에서 Z에 의해 추출된 다양한 특징을 집계할 것을 제안한다. 좀 더 공식적으로, S^(k)_(T)={Xt-k,…,Xt,…,Xt+k} ∈ Xk를 2k+1개의 인접 샘플 (과거에는 k개 샘플, 미래에는 k개 샘플)의 시퀀스로 .. 2022. 4. 12. 이전 1 다음 728x90 반응형 LIST