본문 바로가기
728x90
반응형
SMALL

Train4

[MLops] 모델 훈련 디렉토리 생성 opt 디렉토리에서 mlops-model 디렉토리를 생성한다. mkdir mlops-modelmkdir datasetcp /opt/mlops-crawler/result/watch_log.csv dataset/ 패키지 설치 pip install -U numpy==1.26.4pip install torch torchinfo scikit-learn icecream main.py import torchimport torch.nn as nnimport torch.optim as optimfrom torch.utils.data import Dataset, DataLoaderimport pandas as pdimport numpy as npfrom sklearn.model_selection import.. 2024. 8. 9.
[Object Detection] YOLOv8 커스텀 데이터 학습 Detection Models YOLOv8는 YOLO 실시간 물체 감지 시리즈의 최신 버전으로 정확도와 속도 측면에서 최첨단 성능을 제공한다. 이전 YOLO 버전의 발전을 기반으로 구축된 YOLOv8은 다양한 어플리케이션에서 다양한 객체 감지 작업에 이상적인 선택이 되도록 새로운 기능과 최적화를 도입했다. Model size (pixels) mAPval 50-95 Speed CPU ONNX (ms) Speed A100 TensorRT (ms) params (M) FLOPs (B) YOLOv8n 640 37.3 80.4 0.99 3.2 8.7 YOLOv8s 640 44.9 128.4 1.20 11.2 28.6 YOLOv8m 640 50.2 234.7 1.83 25.9 78.9 YOLOv8l 640 52.9.. 2023. 6. 15.
[Object Detection] YOLOv5 커스텀 데이터 학습 YOLOv5 커스텀 데이터 학습 yolov5에서 git clone하거나 zip 파일로 다운한다. 데이터셋 구조 데이터는 아래와 같이 이미지 파일이 있는 이미지와 바운딩 박스 정보가 있는 txt 라벨 폴더로 구성하고 각 폴더에 부여하고자 하는 정답 폴더로 구분한다. dataset/ ├── images/ │ ├── class1/ │ │ ├── img1.jpg │ │ ├── img2.jpg │ │ ├── ... │ ├── class2/ │ │ ├── img1.jpg │ │ ├── img2.jpg │ │ ├── ... │ ├── class3/ │ │ ├── img1.jpg │ │ ├── img2.jpg │ │ ├── ... ├── labels/ │ ├── class1/ │ │ ├── img1.txt │ │ ├─.. 2023. 6. 5.
[Deep Learning] Train / Validation / Test set Train / Validation / Test set ML 모델링을 하고자 할 때 데이터 set을 나누어 사용한다. 일반적으로 train : validation : test = 60 : 20 : 20 의 비율을 사용한다. 훈련 데이터 (train set) train set은 모델을 학습하는데 사용된다. train set으로 모델을 만든 뒤 동일한 데이터로 성능을 평가해보기도 하지만, 이는 cheating이 되기 때문에 유효한 평가는 아니다. train set은 test set이 아닌 나머지 데이터 set을 의미하기도 하며, train set 내에서 또 다시 쪼갠 validation set이 아닌 나머지 데이터 set을 의미하기도 한다. 따라서 test set과 구분하기 위해 사용되는지, validatio.. 2021. 12. 22.
728x90
반응형
LIST