본문 바로가기
728x90
반응형
SMALL

Torch4

TabNet TabNet TabNet은 tabular 데이터의 훈련에 맞게 설계됐으며 Tree 기반 모델에서 변수의 선택 특징을 네트워크 구조에 반영한 테이블 형식 데이터 학습 아키텍처 모델이다. TabNet은 순차적인 attention을 사용하여 각 결정 단계에서 추론할 기능을 선택하고, 학습 용량이 가장 두드러진 기능에 사용되므로 해석 가능성과 보다 효율적인 학습을 가능하게 한다. 예제 pip install pytorch_tabnet from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.metrics import accuracy_score from pytorch_ta.. 2024. 4. 21.
[PyTorch] Segmentation fault (core dumped) Segmentation fault (core dumped) 동일한 버전의 cuda가 torch와 호환되지 않을 가능성이 있다. 사용 중인 torch 버전이 쿠다와 호환되지 않는 경우 torch를 다시 설치해야 한다. CUDA에는 두 개의 API가 있다. 하나는 런타임 API이고 다른 하나는 드라이버 API이다. 각 API에는 자체 버전이 있다. nvidia-smi의 CUDA는 런타임 API를 나타내며 GPU 드라이버에 의해 설치된다. nvcc의 CUDA는 CUDA 툴킷에 의해 설치된다다. https://pytorch.org/get-started/previous-versions/에서 nvidia-smi로 확인한 cuda 버전을 설치해준다. # CUDA 11.8conda install pytorch==2.5.. 2024. 1. 24.
[Deep Learning] 딥러닝 프레임워크 비교 딥러닝 프레임워크 비교 장점 단점 텐서플로우 (TensorFlow) 텐서보드 (TensorBoard)를 통해서 파라미터 변화 양상이나 DNN의 구조를 알 수 있다. 메모리를 효율적으로 사용하지 못한다. 케라스 (Keras) 배우기 쉽고 모델을 구축하기 쉽다. 오류가 발생할 경우 케라스 자체의 문제인지 백엔드 (back-end)의 문제인지 알 수 없다. 토치 (Torch) 간단하고 직관적인 학습과 속도 대비 빠른 최적화가 가능하다. 텐서플로우에 비해 사용자층이 얕고, 예제 및 자료를 구하기 힘들다. 텐서플로우 (TensorFlow) 텐서플로는 구글이 개발한 오픈소스 소프트웨어 라이브러리이며 머신러닝과 딥러닝을 쉽게 사용할 수 있도록 다양한 기능을 제공한다. 텐서플로는 데이터 플로우 그래프 (Data Flo.. 2022. 5. 19.
[Deep Learning] 딥러닝 프레임워크 (Deep Learning Framework) 딥러닝 프레임워크 (Deep Learning Framework) 딥러닝에 사용되는 인공신경망 알고리즘에는 DNN, CNN, RNN, RBM, DBN 등 다양한 형태의 수많은 알고리즘이 개발되어 활용되고 있으며, 하나의 문제를 해결하기 위해 두 개 이상의 알고리즘을 혼합하여 사용하는 경우도 많아졌다. 이렇게 이미 검증된 알고리즘을 사용할 때마다 계속해서 새롭게 구현해야 한다는 것은 매우 비효율적 방식이다. 딥러닝 프레임워크는 이렇게 이미 검증된 수많은 라이브러리와 사전 학습까지 완료된 다양한 딥러닝 알고리즘을 제공함으로써, 개발자가 이를 빠르고 손쉽게 사용할 수 있도록 해준다. 이를 통해 중복적인 기능을 구현해야 하는 소모적인 작업으로부터 개발자를 해방시켜, 문제 해결을 위한 핵심 알고리즘 개발에만 집중할.. 2022. 5. 19.
728x90
반응형
LIST