[Data Science] 결측치 처리 (2)
범주형 데이터 처리 원핫 인코딩 ➢ 범주형 데이터의 개수만큼 변수를 생성하여 해당 여부를 0 또는 1로 표현 df = pd.read_csv('Medical_dataset.csv') df.head() print(df.dtypes) age float64 sex object bmi float64 smoker object region object children int64 charges float64 dtype: object df_all_columns = pd.get_dummies(df) df_all_columns.head() # 특정 특징만 변경 gender = pd.get_dummies(df[['sex']]) gender.head() bins = [0,10,20,30,40,50,60,70,80,90,101]..
2022. 9. 26.
단축키
내 블로그
내 블로그 - 관리자 홈 전환 |
Q
Q
|
새 글 쓰기 |
W
W
|
블로그 게시글
글 수정 (권한 있는 경우) |
E
E
|
댓글 영역으로 이동 |
C
C
|
모든 영역
이 페이지의 URL 복사 |
S
S
|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.