728x90 반응형 SMALL RMSE2 [AI] 평가 모델 (3) Mean Error MSE, MAE 및 RMSE는 회귀 분석에서 예측 오류율과 모델 성능을 평가하는 데 주로 사용된다. MAE (Mean Absolute Error) MAE (평균 절대 오차)는 데이터 세트에 대한 평균 절대 차이에 의해 추출된 원래 값과 예측 값 사이의 차이를 나타낸다. from sklearn.metrics import median_absolute_error y_true = [3, 5, 7] y_pred = [0, 4, 9] median_absolute_error(y_true, y_pred) 2.0 MSE (Mean Squared Error) MSE (평균 제곱 오차)는 데이터 집합에 대한 평균 차이를 제곱하여 추출한 원래 값과 예측 값의 차이를 나타낸다. from sklearn.met.. 2022. 9. 27. [Deep Learning] 손실 함수 (Loss function) 손실 함수 (Loss function) ML 혹은 DL에서 컴퓨터가 weight를 찾아가는 과정이다. 데이터 포인트에 정의되고 예측과 라벨링에 쓰이고 페널티 측정가능하다. MSE (Mean Squared Error) 예측한 값과 실제 값 사이의 평균 제곱 오차를 정의한다. 공식이 간단하고, 차가 커질수록 제곱 연산으로 값이 더욱 뚜렷해진다. 그리고 제곱으로 인해서 오차가 양수이든 음수이든 누적 값을 증가시킨다. RMSE (Root Mean Squared Error) MSE에 루트를 씌운 것으로 MSE와 기본적으로 동일하다. MSE 값은 오류의 제곱을 구하기 때문에 실제 오류 평균보다 더 커지는 특성이 있어서 MSE에 루트를 씌운 RMSE은 값의 왜곡을 줄여준다. Binary Crossentropy 실제 .. 2022. 1. 3. 이전 1 다음 728x90 반응형 LIST