728x90 반응형 SMALL Multiclass Classification with ROC and AUC1 ROC 및 AUC를 사용한 다중클래스 분류 ROC 및 AUC를 사용한 다중클래스 분류 신경망의 출력은 다양한 형태로 나타날 수 있다. 그러나 전통적으로 신경망 출력은 일반적으로 다음 중 하나이다. • 이진 분류 (Binary Classification) : 두 가지 가능성 (양수 및 음수) 간의 분류이다. 의료 검사에서는 일반적으로 질병에 걸린 사람인지 (양성), 질병이 없는지 (음성) 여부를 확인한다. • 분류 (Classification) : 2개 이상의 붓꽃 데이터세트 간의 분류 (3방향 분류) • 회귀 (Regression) : 수치 예측 이진 분류 및 ROC 차트 이진 분류는 신경망이 참 / 거짓, 예 / 아니요, 정확 / 틀림, 구매 / 판매라는 두 가지 옵션 중에서 선택해야 할 때 발생한다. 이진 분류를 사용하는 방법을 알아보기 위해.. 2023. 11. 7. 이전 1 다음 728x90 반응형 LIST