728x90 반응형 SMALL LightGBM Python2 [LightGBM] Python 패키지 (2) 매개변수 설정 LightGBM은 사전을 사용하여 매개변수를 설정할 수 있다. # 부스터 매개변수: param = {'num_leaves': 31, 'objective': 'binary'} param['metric'] = 'auc' # 여러 평가 지표를 지정 param['metric'] = ['auc', 'binary_logloss'] 훈련 모델을 훈련하려면 매개변수 목록과 데이터 세트가 필요하다. num_round = 10 bst = lgb.train(param, train_data, num_round, valid_sets=[validation_data]) 학습 후 모델을 저장할 수 있다. bst.save_model('model.txt') 훈련된 모델은 JSON 형식으로 덤프할 수도 있다. json_mo.. 2022. 6. 28. [LightGBM] Python 패키지 (1) 설치 pip install lightgbm 데이터 인터페이스 LightGBM Python 모듈은 다음에서 데이터를 로드할 수 있다. LibSVM (zero-based) / TSV / CSV 형식 텍스트 파일 NumPy 2D 배열, pandas DataFrame, H2O DataTable의 프레임, SciPy 희소 행렬 LightGBM 바이너리 파일 LightGBM Sequence개체 데이터는 Dataset개체에 저장된다. import numpy as np # LibSVM(0 기반) 텍스트 파일 또는 LightGBM 바이너리 파일을 Dataset에 로드하려면: train_data = lgb.Dataset('train.svm.bin') # numpy 배열을 Dataset에 로드하려면: data = np.ra.. 2022. 6. 28. 이전 1 다음 728x90 반응형 LIST