728x90 반응형 SMALL LSTM4 Programming LSTM with Keras and TensorFlow Programming LSTM with Keras and TensorFlow 전방 연결을 가진 신경망은 항상 첫 번째 숨겨진 계층에 연결된 입력 계층으로 시작한다. 각 숨겨진 계층은 항상 다음 숨겨진 계층에 연결된다. 마지막 숨겨진 계층은 항상 출력 계층에 연결된다. 이러한 연결 방식이 이러한 네트워크를 "feed-forward"라고 부르는 이유이다. 반복 신경망은 역방향 연결도 허용되기 때문에 경직되지 않는다. 반복적인 연결은 층의 뉴런을 이전 층 또는 뉴런 자체에 연결한다. 대부분의 반복 신경망 아키텍처는 반복 연결에서 상태를 유지한다. 피드포워드 신경망은 어떤 상태도 유지하지 않는다. LSTM LSTM (Long Short Term Memory) 레이어는 심층 신경망과 함께 자주 사용하는 반복 단위.. 2022. 12. 6. [ANN] LSTM으로 삼성전자 주가 예측 LSTM으로 삼성전자 주가 예측 yahoo finance에서 데이터 다운로드 후 3일 (3MA), 5일 (5MA) 가격이평선 추가한다. import tensorflow as tf import numpy as np import pandas as pd import matplotlib.pyplot as plt from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense, Dropout # yahoo finance로부터 데이터 다운로드 raw_df = pd.read_csv('./000000.KS_3MA_5MA.csv') raw_df.head() plt.title('SAMSUNG ELECTRONIC STC.. 2022. 10. 21. [ANN] SimpleRNN (2) 데이터 전처리 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from tensorflow.keras.layers import SimpleRNN, LSTM, Dense from tensorflow.keras import Sequential # data 생성 x = np.arange(0, 100, 0.1) y = 0.5*np.sin(2*x) - np.cos(x/2.0) seq_data = y.reshape(-1,1) print(seq_data.shape) print(seq_data[:5]) (1000, 1) [[-1. ] [-0.89941559] [-0.80029499] [-0.70644984] [-0.62138853]].. 2022. 10. 21. [ANN] LSTM (Long-Short Term Memory) LSTM (Long-Short Term Memory) 실제로 단순한 RNN은 장기적인 종속성 학습에서 문제를 겪는다. RNN은 일반적으로 역전파를 통해 훈련되며, 여기서 소실 (vanishing) 또는 폭주 (exploding)하는 기울기 문제에 직면할 수 있다. 이러한 문제는 신경망 가중치가 너무 작아지거나 너무 커지는 현상을 유발하기 때문에 장기적인 관계를 학습하기에는 효과적이지 않다. Vanishing Gradient Problem을 극복하는 특수한 RNN 유형이 장단기 기억 (LSTM) 신경망이다. LSTM 신경망은 부가적인 게이트를 사용하여 은닉 셀의 어느 정보가 출력과 다음 은닉 상태까지 보내지는지를 제어한다. 이를 통해 신경망은 데이터의 장기적인 관계를 더 효과적으로 학습할 수 있다. L.. 2022. 10. 11. 이전 1 다음 728x90 반응형 LIST