본문 바로가기
728x90
반응형
SMALL

K-fold cross validation2

데이터프레임 전처리 Training and Validation 기계 학습 모델이 이전에 본 적이 없는 값을 예측하는 능력을 기반으로 기계 학습 모델을 평가해야 한다. 이 때문에 종종 훈련 데이터를 유효성 검증 및 훈련 세트로 나눈다. 기계 학습 모델은 훈련 데이터로부터 학습하지만 궁극적으로는 유효성 검사 데이터를 기반으로 평가된다. • 훈련 데이터 : (표본 데이터 내) 신경망이 훈련하던 데이터 • 검증 데이터 : (표본 데이터 외) 기계 학습 모델이 훈련 데이터에 fit 후 평가되는 데이터 훈련 및 유효성 검증 데이터를 처리하는 데는 두 가지 효과적인 방법이 있다. • 훈련 및 검증 데이터 분할 : 프로그램은 훈련 및 검증 (홀드 아웃) 세트 간의 비율에 따라 데이터를 분할한다. 일반적인 비율은 80%의 훈련 및 20%의.. 2023. 7. 27.
[Data Science] 모델 평가 일반화 평가 모델이 학습 데이터가 아닌 새로운 데이터에 대해서도 좋은 성능을 내는지 일반화 에러를 통해 평가한다. 일반화 에러를 구하는 방법은 다양하지만 일반적으로 학습-평가 데이터 나누기, 교차검증을 통해 구할 수 있다. 학습-평가 데이터 나누기 (Train-Test data Split) 데이터를 학습용과 평가용으로 나눠 평가하는 방법이다. 일반적으로 8:2 비율이 가장 흔하게 사용된다. 무작위로 비율만큼의 데이터를 선택해 학습용 데이터를 만들고 나머지를 평가용 데이터로 사용해 모델이 학습용 데이터에만 최적화 되어있는지 검증한다. 교차 검증 학습-평가 데이터 나누기를 한 번만 하는 것이 아니라 여러 번 반복해서 일반화 에러를 평가하는 방법이다. K-Fold 교차 검증 (K-Fold Cross Valid.. 2022. 11. 29.
728x90
반응형
LIST