728x90 반응형 SMALL HGBM1 [Scikit-Learn] HistGradientBoostingClassifier sklearn.ensemble.HistGradientBoostingClassifier 이 추정기는 큰 데이터 세트(n_samples >= 10,000)에서 GradientBoostingClassifier보다 훨씬 빠르다. 이 추정기는 누락된 값 (NaN)을 기본적으로 지원한다. 훈련하는 동안 나무 재배자는 누락된 값이 있는 샘플이 잠재적 이득에 따라 왼쪽 또는 오른쪽 자식으로 이동해야 하는지 여부를 각 분할 지점에서 학습한다. 예측할 때 누락된 값이 있는 샘플은 결과적으로 왼쪽 또는 오른쪽 자식에 할당된다. 교육 중에 지정된 기능에 대해 누락된 값이 없으면 누락된 값이 있는 샘플은 가장 많은 샘플이 있는 하위 항목에 매핑된다. 결측치 처리 import numpy as np import pandas as .. 2023. 7. 5. 이전 1 다음 728x90 반응형 LIST