본문 바로가기
728x90
반응형
SMALL

Group-Level Analysis3

Machine Learning : Group-Level Analysis (Part - 2) (3) Part - 2 모든 데이터는 모델을 구축하는 데 사용한다. #Load and prepare dataset data_folder = '../../study1/study1_eeg/epochdata/' files = [data_folder+f for f in listdir(data_folder) if isfile(join(data_folder, f)) and '.DS_Store' not in f] ids = [int(f[-6:-4]) for f in files] numberOfEpochs = np.zeros((len(ids), 3)) # Read the EEG epochs: epochs_all_UN, epochs_all_UP, epochs_all_NP = [], [], [] for f in range(len.. 2022. 4. 5.
Machine Learning : Group-Level Analysis (Part - 1) (2) Example #2 : Classification between Unpleasant and Neutral Events 불쾌한 사건과 중립적인 사건 사이의 분류 작업에 첫 번째 예의 동일한 단계가 적용된다. results_perParticipant_UN = [] model_names = [ 'LR', 'LDA'] kfold = StratifiedKFold(n_splits=3, random_state=42) for i in range(len(ids)): # Linear Discriminant Analysis clf_lda_pip = make_pipeline(Vectorizer(), StandardScaler(), LinearDiscriminantAnalysis(solver='svd')) #Logistic R.. 2022. 4. 5.
Machine Learning : Group-Level Analysis (Part - 1) (1) Applying Machine Learning Methods to EEG Data on Group Level Single-Participant Analysis라는 자습서에서 동일한 분류 작업을 수행 하지만 이번에는 참가자 그룹의 EEG 데이터를 고려하여 그룹 수준에서 분석이 수행된다. Dataset 단일 참가자 분석에서는 '감정-선행 평가 검사 : 참신함과 쾌적함을 위한 EEG 및 EMG 데이터 세트'의 유일한 참가자 데이터가 사용되었다. 첫 번째 부분에서는 각 참가자에 대해 모델 목록을 별도로 작성한 다음 성능을 통계적으로 비교한다. 두 번째 부분부터 분류기를 구축하는 동안 모든 참가자의 데이터가 포함된다. Part - 1 def warn(*args, **kwargs): pass import warni.. 2022. 4. 5.
728x90
반응형
LIST