본문 바로가기
728x90
반응형
SMALL

Decision Tree3

[Machine Learning] ExtraTree ExtraTree ExtraTrees는 기본적으로 의사결정나무를 기반으로 한 앙상블 학습 방법이다. RandomForest와 같은 ExtraTrees는 특정 결정과 데이터 하위 집합을 무작위로 지정하여 데이터의 과잉 학습과 과적합을 최소화한다. 트리 모델 비교 모델 분산 (Variance) 특징 Decision Tree 높음 단일 의사결정 트리는 일반적으로 하나의 의사결정 경로에서만 학습하기 때문에 학습 중인 데이터에 과적합된다. 단일 의사결정 트리를 통한 예측은 일반적으로 새 데이터에 대해 정확한 예측을 제공하지 않는다. Random Forest 중간 랜덤 포레스트 모델은 다음을 통해 무작위성을 도입하여 과적합 위험을 줄인다. 여러 트리 구축 (n_estimators) 교체를 통한 관찰 그리기(즉, 부.. 2024. 1. 3.
[Data Science] 의사결정 트리 (Decision Tree) (1) 의사결정 트리 (Decision Tree) 어떤 규칙을 하나의 트리 (tree) 형태로 표현한 후 이를 바탕으로 분류나 회귀 문제를 해결하는 것이다. 데이터에 있는 규칙을 학습을 통해 자동으로 찾아내 트리 기반의 분류 규칙을 만드는 것이다. 머신러닝 알고리즘 중 가장 직관적으로 이해하기 쉬운 알고리즘이다. 머신러닝 모델 중 데이터에 대한 설명성이 존재하기에 효과와 실용성이 가장 좋다. 트리 구조의 마지막 노드에는 분류 문제에서 클래스, 회귀 문제에서는 예측치가 들어간다. 규칙은 ‘if-else’ 문으로 표현이 가능하다. 트리 구조 네모 박스 : 노드 (Node) 루트 노드 (Root node) : 트리의 가장 높은 곳에 위치하고 있는 노드 가지 (Branches) : 노드와 노드를 연결하는 화 살표 규칙.. 2022. 9. 27.
02. 의사결정 트리 (Decision Tree) 의사결정 트리 (Decision Tree) 의사결정 트리 (decision tree)는 여러 가지 규칙을 순차적으로 적용하면서 독립 변수 공간을 분할하는 분류 모형이다. 분류 (classification)와 회귀 분석 (regression)에 모두 사용될 수 있기 때문에 CART (Classification And Regression Tree)라고도 한다. 의사결정 트리를 이용한 분류학습 여러가지 독립 변수 중 하나의 독립 변수를 선택하고 그 독립 변수에 대한 기준값 (threshold)을 정한다. 이를 분류 규칙이라고 한다. 최적의 분류 규칙을 찾는 방법은 이후에 자세히 설명한다. 전체 학습 데이터 집합(부모 노드)을 해당 독립 변수의 값이 기준값보다 작은 데이터 그룹(자식 노드 1)과 해당 독립 변수.. 2021. 12. 8.
728x90
반응형
LIST