728x90 반응형 SMALL Adaptive boosting1 13. 랜덤 포레스트 (Random Forest) / 에이다부스트 (AdaBoost) 부스팅 (Boosting) 여러 개의 분류기가 순차적으로 학습 수행, 다음 분류기에게는 가중치 (weight)를 부여하면서 학습, 예측 진행한다. 예측 성능이 뛰어나 앙상블 학습을 주도한다. 학습 라운드를 차례로 진행하면서 각 예측이 틀린 데이터에 점점 가중치를 주는 방식이다. 라운드별로 잘못 분류된 데이터를 좀 더 잘 분류하는 모델로 만들어 최종 적으로 모델들의 앙상블을 만드는 방식으로 배깅 알고리즘이 처음 성능을 측정하기 위한 기준 (baseline) 알고리즘으로 많이 사용 된다면, 부스팅 알고리즘은 높은 성능을 내야 하는 상황에서 가장 좋은 선택지이다. 첫 번째 라운드 결과 모델에서 어떤 점은 오차가 큰 부분이다. 두 번째 라운드에서 오답으로 분류된 어떤 점에 가중치를 줘 학습한다. 다시 오류가 큰.. 2021. 12. 22. 이전 1 다음 728x90 반응형 LIST