728x90 반응형 SMALL 텐서플로우11 [Linux] NVIDIA GPU 사용을 위한 Ubuntu에 Tensorflow 설치 NVIDIA Driver NVIDIA에서 제품에 맞는 드라이버를 설치한다. WSL2 설치 PowerShell에서 WLS2를 설치한다. wls --install PowerShell에서 nvidia-smi 명령으로 GPU 서버를 확인한다. Ubuntu-22.04를 사용한다. nvidia-smi Miniconda 설치 아래의 명령어를 터미널에 입력해 스크립트 파일을 다운로드 후에 실행한다. wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.shsudo bash Miniconda3-latest-Linux-x86_64.sh 경로를 “/home/{사용자 이름}/miniconda3”로 설정한다. # conda 경로 설정export P.. 2024. 5. 28. [Keras] 멀티모달 함의 분류 (2) 데이터 입력 파이프라인 구축 TensorFlow Hub는 다양한 BERT 계열의 모델을 제공한다. 각 모델에는 해당하는 전처리 계층이 함께 제공된다. 리소스에서 이러한 모델과 해당 전처리 계층에 대해 더 자세히 알 수 있다. 런타임을 짧게 하기 위해 원래 BERT 모델의 더 작은 변형을 사용한다. # Define TF Hub paths to the BERT encoder and its preprocessor bert_model_path = ( "https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-256_A-4/1" ) bert_preprocess_path = "https://tfhub.dev/tensorflow/bert_en_uncased_pre.. 2024. 4. 2. ImageDataGenerator 훈련 및 검증 데이터 분할 ImageDataGenerator 훈련 및 검증 데이터 분할 ImageDataGenerator를 사용할 때 훈련 데이터를 훈련 및 검증으로 분할한다. Keras에는 기계 학습 프로젝트에서 모든 종류의 일반적인 작업을 수행하는 데 필요한 많은 필수 유틸리티 기능 및 클래스가 번들로 제공된다. 일반적으로 사용되는 클래스 중 하나는 ImageDataGenerator이다. 문서에 설명된 대로 실시간 데이터 증대를 통해 텐서 이미지 데이터 배치를 생성한다. 데이터는 일괄적으로 반복된다. 지금까지는 훈련 이미지 폴더와 검증 이미지 폴더를 별도로 유지해도 괜찮다. 예를 들어, flow_from_directory 함수와 함께 사용할 이미지에 대해 두 개의 별도 폴더 구조를 생성하여 훈련 및 검증 데이터 세트를 직접 구.. 2023. 9. 6. 뉴런과 층 (Neurons and Layers) Neurons and Layers 대부분의 신경망 구조는 어떤 유형의 뉴런을 사용한다. 많은 다른 신경망이 존재하고 프로그래머들은 실험적인 신경망 구조를 도입한다. 결과적으로 모든 신경망 아키텍처를 포함할 수는 없다. 그러나 신경망 구현 사이에는 몇 가지 공통점이 있다. 신경망 알고리즘은 일반적으로 이러한 단위를 뉴런이라고 부를 수도 있고 아닐 수도 있지만 개별적으로 상호 연결된 단위로 구성된다. 신경망 처리 장치에 대한 이름은 문헌 소스에 따라 다르다. 노드, 뉴런 또는 단위라고 할 수 있다. 인공 뉴런은 다른 뉴런일 수 있는 하나 이상의 소스로부터 입력을 받거나 컴퓨터 프로그램으로부터 네트워크에 입력된 데이터를 수신한다. 이 입력은 일반적으로 부동 소수점 또는 이진수이다. 종종 이진 입력은 true .. 2023. 7. 28. 텐서플로우 (TensorFlow) Deep Learning and Neural Network 신경망은 최초의 기계 학습 모델 중 하나였다. 그 인기는 두 번 떨어졌고 이제 세 번째로 증가하고 있다. 딥러닝은 신경망의 사용을 의미한다. 딥러닝의 deep은 많은 숨겨진 계층이 있는 신경망을 의미한다. 신경망은 너무 오랫동안 존재해왔기 때문에 꽤 많은 짐을 가지고 있다. 연구자들은 많은 다른 훈련 알고리즘, 활성화/전달 기능 및 구조를 만들어 왔다. 신경망은 입력을 받아들여 출력을 만든다. 신경망에 대한 입력을 특징 벡터 (feature vector)라고 한다. 신경망에 대한 입력은 항상 고정된 길이이다. 이 벡터의 크기를 변경하는 것은 일반적으로 전체 신경망을 다시 만드는 것을 의미한다. 특징 벡터를 "벡터"라고 하지만 항상 그렇지는 않다... 2023. 7. 28. [시각 지능] 합성곱 오토인코더 (Convolutional Autoencoder) 합성곱 오토인코더 (Convolutional Autoencoder) 합성곱 오토인코더 (Convolutional Autoencoder)는 오토인코더 (Autoencoder)의 일종으로, 이미지와 같은 고차원 데이터를 저차원으로 압축하고 복원하는 데 사용된다. 합성곱 오토인코더는 합성곱 계층 (convolutional layer)과 풀링 계층 (pooling layer)을 사용하여 입력 데이터의 공간적 정보를 보존하면서 압축한다. 이러한 합성곱 오토인코더는 이미지 처리 분야에서 많이 사용되며, 이미지 노이즈 제거, 이미지 생성 등에 활용된다. 라이브러리 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensor.. 2023. 5. 3. [Keras] tflite 변환 tflite 변환 케라스 모델은 딥러닝 모델을 개발하기 위한 고수준 라이브러리인 케라스를 이용하여 만든 모델이다. tensorflow의 tf.keras 모듈을 통해 케라스 모델을 바로 만들거나 SavedModel, HDF5 포맷으로 저장된 모델을 케라스 모델로 불러와서 tensorflow lite 모델로 변환할 수 있다 h5 파일을 pb 파일로 변환 from tensorflow import keras model = keras.models.load_model('model.h5', compile = False) export_path = './pb' model.save(export_path, save_format = "tf") pb 파일을 tflite 파일로 변환 saved_model_dir = './pb' .. 2022. 11. 24. [AI] Basic Architecture TensorFlow TensorFlow는 텐서 (Tensor)를 흘려 보내면서 (Flow) 딥러닝 알고리즘을 수행하는 프레임워크이다. ① 사용자 친화적 (Keras as High Level API) ② 코드 가독성과 직관성을 높이는 Eager Execution 적용 Keras Keras 창시자 프랑소와 숄레 (François Chollet)가 TF 2.0 개발에 참여하였고, TF 2.0 에서 공식적이고 유일한 High-Level API로써 Keras가 선정되었다. 또한, 프랑소와 숄레는 앞으로 native Keras 보다는 tf.keras를 사용할 것을 권장하고 있다. 사용자 친근성 (User Friendliness) : 직관적인 API를 이용하면 ANN, CNN, RNN 또는 이를 조합한 딥러닝 모델을.. 2022. 7. 17. [Deep Learning] 딥러닝 프레임워크 비교 딥러닝 프레임워크 비교 장점 단점 텐서플로우 (TensorFlow) 텐서보드 (TensorBoard)를 통해서 파라미터 변화 양상이나 DNN의 구조를 알 수 있다. 메모리를 효율적으로 사용하지 못한다. 케라스 (Keras) 배우기 쉽고 모델을 구축하기 쉽다. 오류가 발생할 경우 케라스 자체의 문제인지 백엔드 (back-end)의 문제인지 알 수 없다. 토치 (Torch) 간단하고 직관적인 학습과 속도 대비 빠른 최적화가 가능하다. 텐서플로우에 비해 사용자층이 얕고, 예제 및 자료를 구하기 힘들다. 텐서플로우 (TensorFlow) 텐서플로는 구글이 개발한 오픈소스 소프트웨어 라이브러리이며 머신러닝과 딥러닝을 쉽게 사용할 수 있도록 다양한 기능을 제공한다. 텐서플로는 데이터 플로우 그래프 (Data Flo.. 2022. 5. 19. [Deep Learning] 딥러닝 프레임워크 (Deep Learning Framework) 딥러닝 프레임워크 (Deep Learning Framework) 딥러닝에 사용되는 인공신경망 알고리즘에는 DNN, CNN, RNN, RBM, DBN 등 다양한 형태의 수많은 알고리즘이 개발되어 활용되고 있으며, 하나의 문제를 해결하기 위해 두 개 이상의 알고리즘을 혼합하여 사용하는 경우도 많아졌다. 이렇게 이미 검증된 알고리즘을 사용할 때마다 계속해서 새롭게 구현해야 한다는 것은 매우 비효율적 방식이다. 딥러닝 프레임워크는 이렇게 이미 검증된 수많은 라이브러리와 사전 학습까지 완료된 다양한 딥러닝 알고리즘을 제공함으로써, 개발자가 이를 빠르고 손쉽게 사용할 수 있도록 해준다. 이를 통해 중복적인 기능을 구현해야 하는 소모적인 작업으로부터 개발자를 해방시켜, 문제 해결을 위한 핵심 알고리즘 개발에만 집중할.. 2022. 5. 19. 이전 1 2 다음 728x90 반응형 LIST