728x90 반응형 SMALL 정확도2 [AI] 정확도 (Accuracy) / 손실 (Loss) 정확도 (Accuracy) 정확도는 분류 모델의 성능을 측정하는 방법이다. 전체 데이터에 대한 예측 오류의 수로 볼 수 있다. 쉽게 말해, 전체 데이터 중에서 몇 개를 맞췄는가이다. 일반적으로 백분율로 표시된다. 정확도는 예측 값이 실제 값과 동일한 예측 횟수이다. 특정 샘플에 대한 바이너리 (true/false)이다. 정확도는 종종 전체 또는 최종 모델 정확도와 관련되지만 교육 단계에서 그래프로 표시되고 모니터링된다. 정확도는 손실보다 해석하기 쉽다. 손실 (Loss) 실제 정답과 모델이 예측 한 값 사이의 차이 (거리 또는 오차)이다. 비용 함수라고도 하는 손실 함수는 예측이 실제 값과 얼마나 다른지에 따라 예측의 확률 또는 불확실성을 고려한다. 이것은 모델이 얼마나 잘 수행되고 있는지에 대한 보다 .. 2022. 8. 18. [Deep Learning] 척도 (Metrics) 척도 (Metrics) 척도는 어떤 모델을 평가하기 위해서 사용하는 값이다. 따라서 비슷한 개념인 loss function과의 개념이 헷갈릴 수 있다. loss function은 모델의 성능을 끌어올리기 위해서 참조하는 값이다. 다시말해, 트레이닝 (학습)을 위해서만 사용하는 나침반과 같은 존재라고 한다면 metrics는 모델의 성능을 알기 위한 개념이다. 따라서 metrics와 loss function의 개념은 분리되어야 하지만 경우에 따라서는 특정 metrics에 따라 최적화 하는 것이 최상일 때도 있다. 개념이 유사하기 때문에 동일한 개념으로 metrics를 사용하기도 하고 loss function을 사용하기도 한다. 정확도 (Accuracy) 가장 많이 쓰이는 개념으로 타겟 대비 정확히 예측한 비.. 2022. 1. 3. 이전 1 다음 728x90 반응형 LIST