본문 바로가기
728x90
반응형
SMALL

임베딩 레이어2

Transfer Learning for NLP with Keras Transfer Learning for NLP with Keras 일반적으로 자연어 처리 (NLP)는 전이 학습을 사용한다. 단어 임베딩은 네트워크 레이어가 단어를 벡터에 매핑하는 NLP에서 전이 학습의 일반적인 수단다. 이러한 임베딩을 학습하기 위해 대규모 텍스트 말뭉치에 대해 신경망을 훈련시킨다. 단어 임베딩을 사용하여 감정 분석을 수행한다. 특히, 텍스트 샘플이 긍정적인 어조로 말하고 있는지 부정적인 어조로 말하고 있는지 분류해 본다. 미리 학습된 모델을 TensorFlow에 쉽게 로드할 수 있는 TensorFlow Hub를 사용한다. 다음 명령을 사용하여 TensorHub를 설치한다. !pip install tensorflow_hub 또한, 다음 명령으로 설치할 수 있는 TensorFlow 데이터.. 2024. 2. 13.
Embedding Layers Embedding Layers 임베딩 레이어는 신경망의 데이터 흐름에 추가 정보를 자동으로 삽입할 수 있는 Keras의 편리한 기능이다. 임베딩 레이어를 사용하면 단어 인덱스 대신 n차원 벡터를 자동으로 삽입할 수 있습. 프로그래머는 자연어 처리 (NLP)와 함께 임베딩 레이어를 사용하는 경우가 많지만, 인덱스 값 자리에 더 긴 벡터를 삽입하고 싶을 때도 이 레이어를 사용할 수 있다. 어떤 면에서 임베딩 레이어는 차원 확장이라고 생각할 수 있다. input_dim : 어휘의 크기는 어느 정도인지 얼마나 많은 카테고리를 인코딩하고 있는지에 대한 이 매개변수는 "조회 테이블"의 항목 수 output_dim : 반환하려는 벡터의 숫자 수 input_length : 입력 특징 벡터에 변환해야 하는 항목의 수 이.. 2024. 1. 11.
728x90
반응형
LIST