본문 바로가기
728x90
반응형
SMALL

이미지 분류7

[Image Classification] EfficientNet (cats-and-dogs) Dog&Cat 데이터 # 데이터 불러오기 : Cats vs Dogs dataset !curl -O https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_5340.zip import os import shutil import zipfile ROOT_DIR = '/content' DATA_ROOT_DIR = os.path.join(ROOT_DIR, 'catsanddogs') with zipfile.ZipFile(os.path.join(ROOT_DIR, 'kagglecatsanddogs_5340.zip'), 'r') as target_file: target_file.extractall.. 2022. 9. 14.
[Image Classification] DenseNet (MNIST) DenseNet 케라스 API에서는 이 아키텍처의 구현물을 공식적으로 제공하며 tf.keras.application 패키지를 통해 접근할 수 있다. 이 패키지에는 그 외에도 잘 알려진 모델이 포함되어 있으며 각 모델에 대해 ‘사전에 훈련된’ 매개변수 (특정 데이터셋에서 사전에 훈련시키는 과정에서 저장해둔 매개변수)도 제공한다. 예를 들어, 다음 명령어로 DenseNet 네트워크를 인스턴스화할 수 있다. Dense_net = tf.keras.applications.DenseNet121(Include_top = True, weights = 'imagenet', input_tensor = None, Input_shape = None, pooling = None, classes = 1000) 이 기본 인수를 사.. 2022. 9. 14.
[Image Classification] VGGNet (cats-and-dogs) VGG16 케라스 API에서는 이 아키텍처의 구현물을 공식적으로 제공하며 tf.keras.application 패키지를 통해 접근할 수 있다. 이 패키지에는 그 외에도 잘 알려진 모델이 포함되어 있으며 각 모델에 대해 ‘사전에 훈련된’ 매개변수 (특정 데이터셋에서 사전에 훈련시키는 과정에서 저장해둔 매개변수)도 제공한다. 예를 들어, 다음 명령어로 VGG 네트워크를 인스턴스화할 수 있다. Vgg_net = tf.keras.applications.VGG16( Include_top = True, weights = ‘imagenet’, input_tensor = None, Input_shape = None, pooling = None, classes = 1000) 이 기본 인수를 사용해 케라스는 VGG-16 .. 2022. 9. 6.
[Image Classification] VGGNet VGGNet VGGNet은 옥스포드 대학의 연구팀에 의해 개발된 모델로써, 2014년 ILSVRC에서 준우승한 모델이다. 이 모델은 이전에 혁신적으로 평가받던 AlexNet이 나온지 2년만에 다시 한 번 오차율 면에서 큰 발전을 보여줬다. VGGNet의 original논문의 개요에서 밝히고 있듯이 이 연구의 핵심은 네트워크의 깊이를 깊게 만드는 것이 성능에 어떤 영향을 미치는지를 확인하고자 한 것이다.VGG연구팀은 깊이의 영향 만을 최대한 확인하고자 컨볼루션 필터 커널의 사이즈는 가장 작은 3x3으로 고정했다. VGG 연구팀은 original 논문에서 총 6개의 구조 (A, A-LRN, B, C, D, E)를 만들어 성능을 비교했다. 여러 구조를 만든 이유는 기본적으로 깊이의 따른 성능 변화를 비교하기 .. 2022. 9. 6.
TensorFlow Lite (2) What are the quantization possibilities? TFLite가 모델 양자화를 위해 제공하는 두 가지 옵션이 있다. (i) 훈련 후 양자화 (post-training quantization) : 단순히 모델이 훈련된 후 매개변수의 양자화를 수반한다. (ii) 양자화 인식 훈련 (quantization-aware training) : 훈련 시간 동안 모델을 양자화하는 것을 수반한다. 초기 훈련 전에 네트워크 수정이 필요하고 (가짜 양자화 노드 사용) 나중에 변환이 아닌 훈련을 통해 8비트 가중치를 학습한다. 현재로서는 CNN 아키텍처의 하위 집합에 대해서만 사용할 수 있다. Post-training quantization 훈련 후 양자화는 네트워크를 수정할 필요가 없으므로 이전에 훈.. 2022. 8. 23.
[Computer Vision] paperswithcode paperswithcode 여러 이미지 데이터셋 학습 모델의 벤치마킹을 볼 수 있다. https://paperswithcode.com/task/image-classification Papers with Code - Image Classification **Image Classification** is a fundamental task that attempts to comprehend an entire image as a whole. The goal is to classify the image by assigning it to a specific label. Typically, Image Classification refers to images in which only one object appears p.. 2022. 8. 7.
[TensorFlow] 기본 분류 (이미지 분류) (1) 의류 이미지 분류 텐서플로 모델을 만들고 훈련할 수 있는 고수준 API인 tf.keras를 사용한다. # TensorFlow and tf.keras import tensorflow as tf # Helper libraries import numpy as np import matplotlib.pyplot as plt print(tf.__version__) 패션 MNIST 데이터셋 임포트하기 10개의 범주 (category)와 70,000개의 흑백 이미지로 구성된 패션 MNIST 데이터셋을 사용한다. 이미지는 해상도 (28x28 픽셀)가 낮고 다음처럼 개별 옷 품목을 나타낸다. 패션 MNIST는 컴퓨터 비전 분야의 "Hello, World" 프로그램격인 고전 MNIST 데이터셋을 대신해서 자주 사용된다. M.. 2022. 6. 15.
728x90
반응형
LIST