본문 바로가기
728x90
반응형
SMALL

엔트로피2

[Data Science] 의사결정 트리 (Decision Tree) (1) 의사결정 트리 (Decision Tree) 어떤 규칙을 하나의 트리 (tree) 형태로 표현한 후 이를 바탕으로 분류나 회귀 문제를 해결하는 것이다. 데이터에 있는 규칙을 학습을 통해 자동으로 찾아내 트리 기반의 분류 규칙을 만드는 것이다. 머신러닝 알고리즘 중 가장 직관적으로 이해하기 쉬운 알고리즘이다. 머신러닝 모델 중 데이터에 대한 설명성이 존재하기에 효과와 실용성이 가장 좋다. 트리 구조의 마지막 노드에는 분류 문제에서 클래스, 회귀 문제에서는 예측치가 들어간다. 규칙은 ‘if-else’ 문으로 표현이 가능하다. 트리 구조 네모 박스 : 노드 (Node) 루트 노드 (Root node) : 트리의 가장 높은 곳에 위치하고 있는 노드 가지 (Branches) : 노드와 노드를 연결하는 화 살표 규칙.. 2022. 9. 27.
[TensorFlow] 과대적합 / 과소적합 (2) 가중치 규제하기 오캄의 면도날 (Occam's Razor) 이론에서는 어떤 것을 설명하는 두 가지 방법이 있다면 더 정확한 설명은 최소한의 가정이 필요한 가장 "간단한" 설명일 것이다. 이는 신경망으로 학습되는 모델에도 적용된다. 훈련 데이터와 네트워크 구조가 주어졌을 때 이 데이터를 설명할 수 있는 가중치의 조합 (즉, 가능한 모델)은 많다. 간단한 모델은 복잡한 것보다 과대적합되는 경향이 작을 것이다. 여기서 "간단한 모델"은 모델 파라미터의 분포를 봤을 때 엔트로피 (entropy)가 작은 모델이다 (또는 적은 파라미터를 가진 모델). 따라서, 과대적합을 완화시키는 일반적인 방법은 가중치가 작은 값을 가지도록 네트워크의 복잡도에 제약을 가하는 것이다. 이는 가중치 값의 분포를 좀 더 균일하게 만들어.. 2022. 6. 15.
728x90
반응형
LIST