본문 바로가기
728x90
반응형
SMALL

수치 데이터2

[Deep Learning] 1D CNN 1D CNN 1D CNN은 1차원 데이터를 처리하는 CNN의 한 종류이다. 컴퓨터 비전 작업에서 CNN에 대한 입력은 일반적으로 각 픽셀이 행렬의 값으로 표시되는 2차원 이미지이다. 이와 대조적으로 숫자 데이터는 일반적으로 1차원 값 시퀀스로 표시된다. 일반적으로 CNN은 이미지 처리에서 주로 쓰이며 2D convolution을 사용하지만, 수치나 텍스트 처리에서는 filter가 위아래 한 방향으로만 이동하는 1D Convolution을 사용한다. 1D CNN은 입력 데이터 위에 작은 창을 슬라이딩하고 창과 학습 가능한 필터 세트 사이의 내적을 계산하는 컨볼루션 작업을 입력 데이터에 적용한다. 이 작업의 결과는 피처 맵이며, 이는 비선형 활성화 함수와 풀링 레이어를 통해 전달되어 출력의 차원을 줄인다. .. 2023. 9. 27.
범주형 (Categorical) 및 연속형 (Continuous) 값 Categorical and Continuous Values 신경망은 고정된 수의 열이 입력되어야 한다. 이 입력 형식은 스프레드시트 데이터와 매우 유사하다. 신경망이 데이터로부터 학습할 수 있도록 데이터를 표현하는 것이 필수적이다. 데이터를 전처리하는 구체적인 방법을 위해 정의된 4가지 기본 유형의 데이터를 고려하는 것이 중요하다. 통계학자들은 일반적으로 다음과 같은 측정 수준을 말한다. 문자 데이터 (문자열) Nominal : 개별 이산 항목, 순서가 없다. 예를 들어, 색상, 우편 번호 및 모양 Ordinal : 개별 고유 항목에는 순서가 내포되어 있다. 예를 들어, 등급 수준, 직책, 스타벅스 커피 사이즈 (tall, venti, grande) 수치 데이터 (Numeric Data) 간격 (Int.. 2023. 7. 27.
728x90
반응형
LIST