본문 바로가기
728x90
반응형
SMALL

배깅2

[Machine Learning] 앙상블 (Ensemble) 앙상블 (Ensemble) 여러 개의 알고리즘들이 이용하여 하나의 값을 예측하는 기법을 통칭하며, 대중적인 데이터 분석 알고리즘이다. 선형 회귀나 로지스틱 회귀는 가장 대중적인 알고리즘이고, 그 다음이 의사결정 트리와 앙상블 계열 알고리즘이다. 최근 머신/딥러닝 분야에서 딥러닝 다음으로 부스팅 (boosting) 알고리즘이 핵심적으로 사용된다. 메타 분류기 (meta-classifier)라고도 부른다. 메타 (meta)는 일종의 상위 또는 추상화라는 개념이다. 여러 분류기들을 모아 하나의 분류기를 만들어 이를 메타 분류기라고 부른다. 시간이 많이 소요되지만 비교적 좋은 성능을 낸다. 하나의 데이터를 넣고 이를 여러 모델에 학습시킨다. 테스트 데이터를 각 모델에 입력하고 투표 또는 여러 가중치 기법을 적용.. 2022. 10. 4.
[Data Science] 앙상블 분석 앙상블 분석 주어진 자료로부터 여러 개의 예측모형들을 만든 후 예측모형들을 조합하여 하나의 최종 예측 모형을 만드는 방법 다중모델조합, 분류기조합이 있음 훈련을 한 뒤 예측을 하는데 사용하므로 지도학습 학습방법의 불안전성 학습자료의 작은 변화에 의해 예측모형이 크게 변하는 경우 그 학습방법은 불안정 안정적인 방법 1-nearest neighbor 선형회귀모형 불안정적인 방법 의사결정모형 앙상블 기법의 종류 1. 배깅 주어진 자료에서 여러 개의 붓스트랩 자료를 생성하고 각 붓스트랩 자료에 예측모형을 만든 후 결합하여 최종 예측 모형을 만드는 방법 배깅은 반복추출 방법을 사용하기 때문에 같은 데이터가 한 표본에 여러번 추출될 수 있고, 어떤 데이터는 추출되지 않을 수도 있음 배깅은 가지치기를 하지 않고 최대.. 2022. 3. 8.
728x90
반응형
LIST