728x90 반응형 SMALL 무작위 오버샘플링1 [Resampling Methods] 무작위 오버샘플링에서 수축 요인 (shrinkage factor)의 영향 무작위 오버샘플링에서 수축 요인 (shrinkage factor)의 영향 RandomOverSampler를 사용하여 smoothed bootstrap (부트스트랩)을 생성하는 데 사용된 수축 계수의 효과를 보여준다. 먼저, 몇 개의 샘플만으로 분류 데이터 집합을 생성한다. 클래스 간의 비율은 불균형하다. import seaborn as sns from collections import Counter import matplotlib.pyplot as plt from sklearn.datasets import make_classification sns.set_context("poster") X, y = make_classification( n_samples=100, n_features=2, n_redunda.. 2024. 2. 3. 이전 1 다음 728x90 반응형 LIST