728x90 반응형 SMALL 모델 구성2 [TensorFlow] 기본 분류 (텍스트 분류) (2) 모델 구성 신경망은 층 (layer)을 쌓아서 만든다. 이 구조에서는 두 가지를 결정해야 한다. 모델에서 얼마나 많은 층을 사용할 것인가? 각 층에서 얼마나 많은 은닉 유닛 (hidden unit)을 사용할 것인가? 이 예제의 입력 데이터는 단어 인덱스의 배열이다. 예측할 레이블은 0 또는 1이다. 이 문제에 맞는 모델을 구성한다. # 입력 크기는 영화 리뷰 데이터셋에 적용된 어휘 사전의 크기입니다(10,000개의 단어) vocab_size = 10000 model = keras.Sequential() model.add(keras.layers.Embedding(vocab_size, 16, input_shape=(None,))) model.add(keras.layers.GlobalAveragePooling.. 2022. 6. 15. [TensorFlow] 기본 분류 (이미지 분류) (2) 모델 구성 신경망 모델을 만들려면 모델의 층을 구성한 다음 모델을 컴파일한다. 층 설정 신경망의 기본 빌딩 블록은 레이어이다. 레이어는 레이어에 공급된 데이터로부터 표현을 추출한다. 이러한 표현은 당면한 문제에 의미가 있어야 한다. 대부분 딥러닝은 간단한 층을 연결하여 구성된다. tf.keras.layers.Dense와 같은 층들의 가중치 (parameter)는 훈련하는 동안 학습된다. model = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10) ]) 이 네트워크의 첫 번째 층인 tf.keras.la.. 2022. 6. 15. 이전 1 다음 728x90 반응형 LIST