본문 바로가기
728x90
반응형
SMALL

막대 그래프3

[Matplotlib] 다중 축을 사용한 그래프 생성 import matplotlib.pyplot as plt import numpy as np # 데이터 1 data1 = [(1, 4), (3, 7), (5, 9)] # 데이터 2 data2 = [(2, 6), (4, 8), (6, 10)] # 가로 막대 그래프 생성 fig, ax1 = plt.subplots() # 데이터 1을 막대 그래프로 표시 for i, (start, end) in enumerate(data1): ax1.barh(i, end-start, left=start, height=0.4, align='center', color='steelblue', alpha=0.7) # 데이터 2를 막대 그래프로 표시 for i, (start, end) in enumerate(data2): ax1.barh.. 2023. 5. 25.
[Pandas] 시각화 시각화 import numpy as np import pandas as pd import matplotlib.pyplot as plt se0 = pd.Series(np.random.randn(100).cumsum()) se0.plot() df = pd.DataFrame(np.random.randn(100, 5).cumsum(0), columns= ['arr1', 'arr2', 'arr3', 'arr4', 'arr5'] ) df.plot() 막대 그래프 se0.plot(kind='bar') df.plot(kind='bar') # 가로 바 차트 se0.plot(kind='barh') df.plot(kind='barh') df.plot(kind='bar', stacked=True) 히스토그램 값의 빈도를 분리.. 2022. 10. 23.
[Data Science] 데이터 시각화 (4) 파일 불러오기 import pandas as pd import matplotlib.pyplot as plt plt.rcParams["font.family"] = "Malgun Gothic" graph = pd.read_excel("test_data.xlsx", sheet_name = "Sheet1") graph.head(10) 선 그래프 graph.plot(y = ["국어", "영어", "수학"], grid = True, title = "선그래프", color = ["green", "red", "blue"]) plt.show() 산점도 그래프 graph.plot.scatter(x = "반", y = "영어", color = "red", title = "영어 점수 산점도") plt.show() 막대 그래프.. 2022. 9. 22.
728x90
반응형
LIST