본문 바로가기
728x90
반응형
SMALL

데이터 스케일링8

[XGBoost] 보험료 예측 데이터셋 로드 import pandas as pd df = pd.read_csv('Medical_Insurance_dataset.csv') df.head() 원-핫 인코딩 df = pd.get_dummies(df) df.head() 데이터 전처리 # 훈련 데이터, 검증 데이터, 테스트 데이터 나누기 features = df[df.keys().drop('charges')].values outcome = df['charges'].values.reshape(-1, 1) from sklearn.model_selection import train_test_split train_features, test_features, train_target, test_target = train_test_split(feature.. 2022. 10. 5.
[XGBoost] 심혈관 질환 예측 데이터셋 로드 import pandas as pd df = pd.read_csv('Cardiovascular_Disease_dataset.csv') df.head() df['Presence or absence of cardiovascular disease'].value_counts() 0 35021 1 34979 Name: Presence or absence of cardiovascular disease, dtype: int64 데이터 전처리 # 훈련 데이터, 검증 데이터, 테스트 데이터로 나누기 features = df[df.keys().drop(['id','Presence or absence of cardiovascular disease'])].values outcome = df['Presence o.. 2022. 10. 5.
[XGBoost] 심장 질환 예측 데이터셋 로드 import pandas as pd df = pd.read_csv('Heart_Prediction_Dataset.csv') df.head() 원-핫 인코딩 df = pd.get_dummies(df) df.head() df['HeartDisease'].value_counts() 데이터 전처리 # 훈련 데이터, 검증 데이터, 테스트 데이터 나누기 features = df[df.keys().drop(['HeartDisease'])].values outcome = df['HeartDisease'].values.reshape(-1,1) from sklearn.model_selection import train_test_split train_features, test_features, train_ta.. 2022. 10. 4.
[XGBoost] 위스콘신 유방암 데이터 (3) wpbc 데이터셋 특징은 유방 종괴의 미세 바늘 흡인물 (FNA)의 디지털화된 이미지에서 계산된다. 이것은 이미지에 존재하는 세포 핵의 특성을 설명한다. (https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29) import pandas as pd df = pd.read_csv('wpbc_data.csv', header=None) df.head() # Outcome 값 변경 df.loc[df[1]=='N',1] = 0 df.loc[df[1]=='R',1] = 1 df[1] = df[1].astype('int32') df.describe() # 결측치 제거 및 Outcome 비율 확인 for key in df.keys.. 2022. 10. 4.
[XGBoost] 위스콘신 유방암 데이터 (2) wdbc 데이터셋 특징은 유방 종괴의 미세 바늘 흡인물 (FNA)의 디지털화된 이미지에서 계산된다. 이것은 이미지에 존재하는 세포 핵의 특성을 설명한다. (https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29) import pandas as pd df = pd.read_csv('wdbc_data.csv', header=None) df.head() # Outcome 값 변경 df.loc[df[1]=='B', 1] = 0 df.loc[df[1]=='M', 1] = 1 df[1] = df[1].astype('int32') df.describe() df.isnull().sum() 데이터 전처리 features = df[d.. 2022. 10. 4.
[XGBoost] 위스콘신 유방암 데이터 (1) 위스콘신 유방암 데이터 사이킷런에서는 UCI ML 유방암 위스콘신 (진단) 데이터 세트를 제공한다. 또한, 사본도 다운로드 가능하다. 라이브러리 설치 conda install -c conda-forge xgboost conda install -c conda-forge imbalanced-learn breast-cancer-wisconsin 데이터셋 로드 import pandas as pd df = pd.read_csv('breast-cancer-wisconsin.data.csv', names=['id','Clump Thickness','Uniformity of Cell Size','Uniformity of Cell Shape','Marginal Adhesion','Single Epithelial Cell.. 2022. 10. 4.
[Data Science] 이상치 처리 이상치 (Outlier) 극단적으로 값이 크거나 작은 값을 말한다. 데이터 오기입 혹은 특이 현상을 칭한다. 당뇨병 데이터셋 ➢ Pregnancies : 임신 횟수 ➢ Glucose : 포도당 부하 검사 수치 ➢ BloodPressure : 혈압 ➢ SkinThinkness : 삼두근 피부 두께 ➢ Insulin : 인슐린 수치 ➢ BMI : BMI 수치 ➢ DiabetesPedigreeFunction : 당뇨병 가족력 ➢ Age : 나이 ➢ Outcome : 당뇨병 여부 import numpy as np import pandas as pd df = pd.read_csv('Diabetes_Database.csv') for key in ["Glucose","BloodPressure","SkinThickne.. 2022. 9. 26.
[Data Science] 결측치 처리 (2) 범주형 데이터 처리 원핫 인코딩 ➢ 범주형 데이터의 개수만큼 변수를 생성하여 해당 여부를 0 또는 1로 표현 df = pd.read_csv('Medical_dataset.csv') df.head() print(df.dtypes) age float64 sex object bmi float64 smoker object region object children int64 charges float64 dtype: object df_all_columns = pd.get_dummies(df) df_all_columns.head() # 특정 특징만 변경 gender = pd.get_dummies(df[['sex']]) gender.head() bins = [0,10,20,30,40,50,60,70,80,90,101].. 2022. 9. 26.
728x90
반응형
LIST