본문 바로가기
728x90
반응형
SMALL

과적합2

정규화 (Regularization) 정규화 (Regularization) 정규화는 과적합을 줄이는 기술로, 신경망이 훈련 데이터를 학습하기보다는 암기하려고 할 때 발생한다. 인간은 또한 과적합을 할 수 있다. 기계가 어떻게 우연히 과적합되는지를 조사하기 전에, 먼저 인간이 어떻게 기계로부터 고통을 받을 수 있는지를 탐구해야 한다. 인간 프로그래머들은 종종 주어진 프로그래밍 언어로 그들의 능력을 보여주기 위해 자격증 시험을 치른다. 이러한 시험을 준비하는 것을 돕기 위해, 시험 제작자들은 종종 연습 시험을 이용할 수 있게 한다. 연습 시험을 보고, 더 공부하고, 그리고 나서 연습 시험을 다시 보는 루프에 들어가는 프로그래머를 생각해보자. 프로그래머는 개별 문제를 파악하는 데 필요한 기술을 배우기보다는 어느 시점에서 연습 시험의 많은 부분을 .. 2023. 2. 8.
[Deep Learning] 과적합 (Overfitting) 과적합 (Overfitting) 데이터가 너무 fit하게 학습이 되면서 생기는 문제를 과적합(Overfitting)이라 부른다. 데이터의 학습이 제대로 되지 않는 상태인 반대 개념을 언더피팅 (Underfitting)이라 한다. 과적합이 발생하는 사유 1. 학습 데이터가 너무 적은 경우 2. 학습 데이터 전처리를 잘못한 경우 3. 특징 (feature) 데이터가 너무 많은 경우 오버피팅을 줄이는 방법 1. feature를 줄이거나 정규화한다. 2. 데이터를 늘린다. 2022. 1. 3.
728x90
반응형
LIST