본문 바로가기
728x90
반응형
SMALL

경사하강법3

[FL] 클라이언트-서버 구조 (CLIENT-SERVER ARCHITECTURE) 수평적 연합 학습의 구조 HFL 시스템의 일반적인 클라이언트-서버 아키텍처는 그림과 같으며 이는 마스터-작업자 아키텍처라고도 한다. 이 시스템에서는 동일한 데이터 구조를 가진 K 참가자 (클라이언트, 사용자 또는 당사자라고도 함)가 서버 (매개변수 서버 또는 집계 서버 또는 코디네이터라고도 함)의 도움을 받아 기계 학습 (ML) 모델을 공동으로 훈련한다. 일반적인 가정은 참가자가 정직한 반면 서버는 정직하지만 호기심이 많다는 것이다. 따라서, 목표는 모든 참가자의 정보가 서버로 유출되는 것을 방지하는 것이다. 이러한 HFL 시스템의 훈련 과정은 일반적으로 다음 네 단계로 구성된다. • 1단계 : 참가자는 로컬에서 그레디언트를 계산하고, 암호화, 차등 프라이버시 또는 비밀 공유 기술을 사용하여 그레디언트 .. 2023. 9. 26.
[Machine Learning] 경사하강법 (Gradient Descent) 경사하강법 (Gradient Descent) 경사 하강법 (Gradient descent)은 1차 근삿값 발견용 최적화 알고리즘이다. 기본 아이디어는 함수의 기울기 (경사)를 구하여 기울기가 낮은 쪽으로 계속 이동시켜서 극값에 이를 때까지 반복시키는 것이다. 예를 들어, 회사 직원들의 근무 만족도를 1~100점 점수로 평가한 데이터가 있다고 가정하고 그것을 이차원 그래프상에 표시한다. 위의 데이터를 보면 "급여가 올라감에 따라 직원 만족도가 높아지는 경향이 있다"와 같은 패턴이 있다는 것을 알 수 있지만 모든 것이 일직선 상에 잘 맞지는 않다. 이러한 현상은 현실 세계에서 실제 데이터가 있는 경우 항상 발생한다. 그렇다면 급여에 따른 직원의 만족도를 완벽하게 예측할 수 있는 AI를 어떻게 학습 시킬 수 .. 2022. 4. 28.
[Deep Learning] 역전파 (Backpropagation) / 경사하강법 (Gradient Descent) 역전파 (Backpropagation) input에서 output으로 weight를 업데이트하면서 activation fuction을 통해 결과값을 가져오는 것을 순전파 (foward)라고 하며 말 그대로 앞쪽으로 input 값을 전파, 보내는 것이다. 하지만 임의로 순전파 했다고 출력 값이 정확하지는 않을 것이다. 임의로 설정한 weight 값이 input에 의해서 한 번 업데이트 되긴 했지만 많은 문제가 있을 수 있다. 역전파는 출력값에 대한 입력값의 기울기를 출력층 layer에서부터 계산하여 거꾸로 전파시키는 것이다. 거꾸로 전파시켜 최종적으로 출력층에서 output값에 대한 입력층의 input data 기울기 값을 구할 수 있다. 이 과정에서 chain rule이 이용된다. input이 들어오는 .. 2022. 1. 3.
728x90
반응형
LIST