본문 바로가기
728x90
반응형
SMALL

경사 하강법3

[Data Science] 경사 하강법 (Gradient Descent) 경사 하강법 (Gradient Descent) 손실 함수의 최소값을 찾기 위한 알고리즘이다. 실생활에서 적용되는 데이터들은 함수 형태가 복잡하여 미분 계수를 계산하는 과정에 비해 비교적 쉽게 구현 가능하다. 데이터 양이 커질수록 계산량 측면에서 효율적이다. 임의의 매개변수를 정해 비용 함수의 시작 지점 (x축)으로 지정 해당 매개변수로 모델의 오차를 구한 다음, 비용 함수의 시작 지점 (y축)으로 지정 시작 지점에서 다음 지점으로 갈 방향을 정하기 위해, 시작 지점의 기울기를 계산 기울기 (Gradient)와 보폭 (Learning rate)를 사용해 다음 지점으로 이동 위의 과정을 최소값에 도달할 때까지 반복 학습률 (Learning rate)이 너무 크면 발산할 수 있고, 학습률이 너무 작으면 학습 .. 2022. 11. 10.
[Deep Learning] 경사 하강법 (Gradient Descent) / 배치 사이즈 (Batch Size) / 에포크 (Epoch) 경사 하강법 (Gradient Descent) 반복 (iterative, 곡선의 최소값) 최상의 결과를 찾기 위해 기계 학습에 사용되는 최적화 알고리즘이다. 알고리즘은 iterative이므로 최적의 결과를 얻으려면 여러 번 결과를 얻어야 한다. gradient descent의 반복적인 quality은 과소 적합 (under-fitted) 그래프가 그래프를 데이터에 최적으로 맞추는 데 도움이 된다. gradient descent에는 학습률 (learning rate)이라는 매개변수 (parameter)가 있다. 왼쪽 그림에서 처음에는 단계가 더 크다는 것은 learning rate이 더 높다는 것을 의미하고, 포인트가 내려갈수록 단계의 크기가 짧을수록 learning rate은 더 작아진다. 또한, 비용 .. 2021. 12. 22.
10. 신경망 (Neural Network) 신경망 (Neural Network) 기계학습과 인지과학에서 생물학의 신경망 (동물의 중추신경계중 특히 뇌)에서 영감을 얻은 통계학적 학습 알고리즘이다. 신경세포를 흉내 내며 어느 정도 이하의 자극은 무시된다. 퍼셉트론 (Perceptron) 퍼셉트론 (perceptron)은 인공신경망의 한 종류로서, 1957년에 코넬 항공 연구소(Cornell Aeronautical Lab)의 프랑크 로젠블라트 (Frank Rosenblatt)에 의해 고안되었다. 다층 퍼셉트론 (Multilayer Perceptron) 다층 퍼셉트론은 입력층과 출력층 사이에 하나 이상의 중간층이 존재하는 신경망이다. 네트워크는 입력층, 은닉층, 출력층 방향으로 연결되어 있고, 각 층내의 연결과 출력층에서 입력층으로 직접적 연결이 없다.. 2021. 12. 15.
728x90
반응형
LIST