728x90 반응형 SMALL 가중치 규제3 [Image Segmentation] Custom Cost (Loss) Function Focal Loss Focal loss는 one-stage object detection에서 object와 background의 클래스간 불균형이 극도로 심한 상황을 해결하기 위해 제안되었다. Focal Loss 작동 원리는 Focusing parameter에서 r은 일반적으로 0 ~ 5 사이의 값이다. 즉, 잘못 분류된 examples의 중요도를 상대적으로 높이는 역할을 한다. 감마 (gamma)값이 커질수록 가중치 규제가 강하게 들어간다. ALPHA = 0.8 GAMMA = 2 def FocalLoss(targets, inputs, alpha=ALPHA, gamma=GAMMA): inputs = K.flatten(inputs) targets = K.flatten(targets) BCE = K.bina.. 2022. 12. 15. [TensorFlow] 과대적합 / 과소적합 (2) 가중치 규제하기 오캄의 면도날 (Occam's Razor) 이론에서는 어떤 것을 설명하는 두 가지 방법이 있다면 더 정확한 설명은 최소한의 가정이 필요한 가장 "간단한" 설명일 것이다. 이는 신경망으로 학습되는 모델에도 적용된다. 훈련 데이터와 네트워크 구조가 주어졌을 때 이 데이터를 설명할 수 있는 가중치의 조합 (즉, 가능한 모델)은 많다. 간단한 모델은 복잡한 것보다 과대적합되는 경향이 작을 것이다. 여기서 "간단한 모델"은 모델 파라미터의 분포를 봤을 때 엔트로피 (entropy)가 작은 모델이다 (또는 적은 파라미터를 가진 모델). 따라서, 과대적합을 완화시키는 일반적인 방법은 가중치가 작은 값을 가지도록 네트워크의 복잡도에 제약을 가하는 것이다. 이는 가중치 값의 분포를 좀 더 균일하게 만들어.. 2022. 6. 15. [TensorFlow] 과대적합 / 과소적합 (1) 과대적합 / 과소적합 tf.keras API를 사용한다. 텐서플로 케라스 가이드에서 tf.keras API에 대해 더 많은 정보를 얻을 수 있다. 일정 에포크 동안 훈련하면 검증 세트에서 모델 성능이 최고점에 도달한 다음 감소하기 시작한 것을 알 수 있다. 다른 말로 하면, 모델이 훈련 세트에 과대적합 (overfitting)된 것이다. 과대적합을 다루는 방법이 필요하다. 훈련 세트에서 높은 성능을 얻을 수 있지만 진짜 원하는 것은 테스트 세트 (또는 이전에 본 적 없는 데이터)에 잘 일반화되는 모델이다. 과대적합의 반대는 과소적합 (underfitting)이다. 과소적합은 테스트 세트의 성능이 향상될 여지가 아직 있을 때 일어난다. 발생하는 원인은 여러가지이다. 모델이 너무 단순하거나, 규제가 너무 많.. 2022. 6. 15. 이전 1 다음 728x90 반응형 LIST